Learning Causality for Modern Machine Learning

With a focus on the Out-of-Distribution Generalization challenge

Yongqiang Chen The Chinese University of Hong Kong

Machine Learning Systems are Everywhere

In our modern daily life, machine learning (ML) systems are everywhere.

Face ID

Autonomous Driving

Recommenders

Predicting how III

From Traditional ML to Modern ML

There is a paradigm shift challening the **fundamental assumption** in ML:

Traditional Machine Learning

Test Distribution

Modern Machine Learning

The Out-of-Distribution Generalization Failure

Distribution shifts/changes are everywhere. Existing ML models deployed in the wild can fail short in generalizing to new domains/environments, or across subpopulations.

Training Environment

Waymo Open Challenge

Various Test Environments

(Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Koh et al., 2021)

The Out-of-Distribution Generalization Failure

Distribution shifts/changes are everywhere. Existing ML models deployed in the wild can fail short in generalizing to new domains/environments, or across subpopulations.

(Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Koh et al., 2021)

What is unchanged across changes?

Train Environment

Test Environment

Causal Invariance Principle: The causal mechanges parents is independent from the changes.

<image>

Train Environment

P(Label I Animal shapes etc.) is invariant!

Causal Invariance Principle: The causal mechanism generating the target variable from its direct

Test Environment

Leveraging the principle of causal invariance, we can seek for

(Peters et al., 2015; Arjovsky et al., 2019; Bottou et al., 2021;)

Leveraging the principle of causal invariance, we can seek for

Invariant predictor $f = w \circ \phi$ implemented with invariant risk minimization (IRM): $\min_{f=w\circ\varphi}\sum_{e\in G} \sum_{e\in G} \sum_{e} \sum_{e\in G} \sum_{e\in G} \sum_{e\in G} \sum_{e\in G} \sum_{E$

s.t. $w \in \arg\min_{\bar{w}} \mathcal{L}_e(\bar{w} \circ \varphi), \ \forall e \in \mathcal{E}_{tr},$

that is simultaneously optimal across different environments/domains.

$$_{\mathcal{E}_{\mathrm{tr}}} \mathcal{L}_e(w \circ \varphi),$$

(Peters et al., 2015; Arjovsky et al., 2019; Bottou et al., 2021;)

Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are **iid**., i.e., independently sampled from an identical distribution, while data is often **OOD**, i.e., out-of-distribution, in real-world applications.

Causal Representation Learning on Graphs: [NeurIPS'22 Spotlight, NeurIPS'23a]

Useful Properties of the Causal Representations: OOD Generalizability [NeurIPS'22, 23a], Adversarial Robustness [ICLR'22], Interpretability [ICML'24a]

Optimization & Feature Learning schemes for Causal Representation Learning: [ICLR'23a, NeurIPS'23b]

Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are **iid**., i.e., independently sampled from an identical distribution, while data is often **OOD**, i.e., out-of-distribution, in real-world applications.

Causal Representation Learning on Graphs: [NeurIPS'22 Spotlight, NeurIPS'23a]

Useful Properties of the Causal Representations: OOD Generalizability [NeurIPS'22, 23a], Adversarial Robustness [ICLR'22], Interpretability [ICML'24a]

Optimization & Feature Learning schemes for Causal Representation Learning: [ICLR'23a, NeurIPS'23b]

Causal Representation Learning on Graphs

We seek to derive general causal representation learning objectives from a general view, i.e., graphs.

Model & Inference over the physical world

Knowledge Graph Completion & Analysis

(El-Aziz et al., 2020)

Dataset	In-dist	Out-of-Dist	Gap
Drug00D-lbap-core-ic50-assay	89.62 (2.04)	71.98 (0.29)	17.64
Drug00D-lbap-core-ic50-scaffold	87.15 (0.48)	69.54 (0.52)	17.60
Drug00D-lbap-core-ic50-size	92.35 (0.15)	67.48 (0.47)	24.87
Drug00D-lbap-refined-ic50-assay	89.25 (0.64)	72.70 (0.00)	16.55
Drug00D-lbap-refined-ic50-scaffold	86.23 (0.08)	70.45 (0.54)	15.78
Drug00D-lbap-refined-ic50-size	91.31 (0.07)	68.74 (0.37)	22.58
Drug00D-lbap-general-ic50-assay	85.19 (1.15)	69.88 (0.13)	15.32
Drug00D-lbap-general-ic50-scaffold	85.15 (0.24)	67.55 (0.09)	17.60
Drug00D-lbap-general-ic50-size	89.77 (0.08)	66.05 (0.32)	23.72
Drug00D-sbap-core-ic50-protein	90.71 (0.29)	68.87 (0.53)	21.84
Drug00D-sbap-core-ic50-protein-family	89.88 (1.44)	72.20 (0.14)	17.68
Drug00D-sbap-refined-ic50-protein	86.87 (1.41)	69.51 (0.30)	17.36
Drug00D-sbap-refined-ic50-protein-family	86.44 (3.07)	70.61 (0.42)	15.82
Drug00D-sbap-general-ic50-protein	85.34 (1.67)	68.48 (0.27)	16.86
Drug00D-sbap-general-ic50-protein-family	79.18 (2.69)	68.60 (0.68)	10.58

Dataset	Gap
Drug00D-lbap-core-ic50-assay	17.64
Drug00D-lbap-core-ic50-scaffold	17.60
Drug00D-lbap-core-ic50-size	24.87
Drug00D-lbap-refined-ic50-assay	16.55
Drug00D-lbap-refined-ic50-scaffold	15.78
Drug00D-lbap-refined-ic50-size	22.58
Drug00D-lbap-general-ic50-assay	15.32
Drug00D-lbap-general-ic50-scaffold	17.60
Drug00D-lbap-general-ic50-size	23.72
Drug00D-sbap-core-ic50-protein	21.84
Drug00D-sbap-core-ic50-protein-family	17.68
Drug00D-sbap-refined-ic50-protein	17.36
Drug00D-sbap-refined-ic50-protein-family	15.82
Drug00D-sbap-general-ic50-protein	16.86
Drug00D-sbap-general-ic50-protein-family	10.58

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Structure-level shifts

Attribute-level shifts

(Knyazev et al. 2019; Hu et al., 2020; Koh et al., 2021; Gui et al., 2022; Chen et al., 2022)

"House"

Mixture of structure-level and attribute-level shifts

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

Testing Data

"Cycle"

Specifically,

• Graphs are highly non-linear;

"Cycle"

"House"

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

$f_{\text{GNN}}(\{ \square \mathcal{F} \} \}, \{ \bigcirc \bigcirc \}) = \text{"House"}$

Specifically,

- Graphs are highly non-linear;
- There could be **attribute-level shifts**;

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

"House"

Testing Data

Specifically,

- Graphs are highly non-linear;
- There could be attribute-level shifts;
- There could be **structure-level shifts**;

"House"

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

"House"

Specifically,

- Graphs are highly non-linear;
- There could be attribute-level shifts;
- There could be structure-level shifts;
- Both shifts can be **mixed**;

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

Specifically,

- Graphs are highly non-linear;
- There could be attribute-level shifts;
- There could be structure-level shifts;
- Both shifts can be mixed;

"House"

Environment partitions are expensive

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

OOD generalization on graphs are much more challenging!

- Graphs are highly non-linear
- Attribute-level shifts
- Structure-level shifts
- Mixed shifts in different modes
- Expensive environment labels

Structure and attribute shifts

OOD failures of GNNs *training objectives* and *architectures*

How can we model the complicated graph distribution shifts? And train a GNN to capture the desired invariance?

Structural Causal Models for Graph Generation

We formulate the most comprehensive causal models for distribution shifts on graphs.

Structural Causal Models for Graph Generation

We formulate the most comprehensive causal models for distribution shifts on graphs.

We propose a new framework, CIGA, that approaches the classification in two steps:

We propose a new framework, CIGA, that approaches the classification in two steps:

When $|G_c| = s_c$ is known and fixed,

We propose a new framework, CIGA, that approaches the classification in two steps:

CIGA achieves the state-of-the-art OOD generalization performance under **30+** datasets and graph distribution shifts, including a OOD drug property prediction task.

Theoretical results (Informal):

Given the previous SCMs, each solution to CIGAv1 or CIGAv2 elicits a GNN that is generalizable against various distribution shifts, with some mild assumptions on training environments, and the expressivity of GNNs encoders.

Tuble 1. 000 generalization periornitative on stractare and mixed simils for synanetic graphs.							
		SPMOTIF-STRUC	t	S	SPMOTIF-MIXED	†	
	BIAS=0.33	BIAS=0.60	BIAS=0.90	BIAS=0.33	BIAS=0.60	BIAS=0.90	AVG
ERM	59.49 (3.50)	55.48 (4.84)	49.64 (4.63)	58.18 (4.30)	49.29 (8.17)	41.36 (3.29)	52.24
ASAP	64.87 (13.8)	64.85 (10.6)	57.29 (14.5)	66.88 (15.0)	59.78 (6.78)	50.45 (4.90)	60.69
DIR	58.73 (11.9)	48.72 (14.8)	41.90 (9.39)	67.28 (4.06)	51.66 (14.1)	38.58 (5.88)	51.14
IRM	57.15 (3.98)	61.74 (1.32)	45.68 (4.88)	58.20 (1.97)	49.29 (3.67)	40.73 (1.93)	52.13
V-REX	54.64 (3.05)	53.60 (3.74)	48.86 (9.69)	57.82 (5.93)	48.25 (2.79)	43.27 (1.32)	51.07
EIIL	56.48 (2.56)	60.07 (4.47)	55.79 (6.54)	53.91 (3.15)	48.41 (5.53)	41.75 (4.97)	52.73
IB-IRM	58.30 (6.37)	54.37 (7.35)	45.14 (4.07)	57.70 (2.11)	50.83 (1.51)	40.27 (3.68)	51.10
CNC	70.44 (2.55)	66.79 (9.42)	50.25 (10.7)	65.75 (4.35)	59.27 (5.29)	41.58 (1.90)	59.01
CIGAv1	71.07 (3.60)	63.23 (9.61)	51.78 (7.29)	74.35 (1.85)	64.54 (8.19)	49.01 (9.92)	62.33
CIGAv2	77.33 (9.13)	69.29 (3.06)	63.41 (7.38)	72.42 (4.80)	70.83 (7.54)	54.25 (5.38)	67.92
ORACLE (IID)		88.70 (0.17)			88.73 (0.25)		
[†] Higher accuracy and lower variance indicate better OOD generalization ability.							

Fable 1: OOD generalization performance or	structure and mixed shifts for synthetic graph	S.
--	--	----

CIGA outperforms previous methods under *structure and mixed shifts* by a significant margin up to 10%.

CIGA achieves the state-of-the-art OOD generalization performance under 30+ datasets and graph distribution shifts, including a OOD drug property prediction task.

Theoretical results (Informal):

Given the previous SCMs, each solution to CIGAv1 or CIGAv2 elicits a GNN that is generalizable against various distribution shifts, with some mild assumptions on training environments, and the expressivity of GNNs encoders.

DATASETS	DRUG-ASSAY	DRUG-SCA	DRUG-SIZE	CMNIST-SP	GRAPH-SST5	TWITTER	AVG (RANK)
ERM	71.79 (0.27)	68.85 (0.62)	66.70 (1.08)	13.96 (5.48)	43.89 (1.73)	60.81 (2.05)	54.33 (6.00)
ASAP	70.51 (1.93)	66.19 (0.94)	64.12 (0.67)	10.23 (0.51)	44.16 (1.36)	60.68 (2.10)	52.65 (8.33)
GIB	63.01 (1.16)	62.01 (1.41)	55.50 (1.42)	15.40 (3.91)	38.64 (4.52)	48.08 (2.27)	47.11 (10.0)
DIR	68.25 (1.40)	63.91 (1.36)	60.40 (1.42)	15.50 (8.65)	41.12 (1.96)	59.85 (2.98)	51.51 (9.33)
IRM	72.12 (0.49)	68.69 (0.65)	66.54 (0.42)	31.58 (9.52)	43.69 (1.26)	63.50 (1.23)	57.69 (4.50)
V-REX	72.05 (1.25)	68.92 (0.98)	66.33 (0.74)	10.29 (0.46)	43.28 (0.52)	63.21 (1.57)	54.01 (6.17)
EIIL	72.60 (0.47)	68.45 (0.53)	66.38 (0.66)	30.04 (10.9)	42.98 (1.03)	62.76 (1.72)	57.20 (5.33)
IB-IRM	72.50 (0.49)	68.50 (0.40)	66.64 (0.28)	39.86 (10.5)	40.85 (2.08)	61.26 (1.20)	58.27 (5.33)
CNC	72.40 (0.46)	67.24 (0.90)	65.79 (0.80)	12.21 (3.85)	42.78 (1.53)	61.03 (2.49)	53.56 (7.50)
CIGAv1 CIGAv2	72.71 (0.52) 73.17 (0.39)	69.04 (0.86) 69.70 (0.27)	67.24 (0.88) 67.78 (0.76)	19.77 (17.1) 44.91 (4.31)	44.71 (1.14) 45.25 (1.27)	63.66 (0.84) 64.45 (1.99)	56.19 (2.50) 60.88 (1.00)
ORACLE (IID)	85.56 (1.44)	84.71 (1.60)	85.83 (1.31)	62.13 (0.43)	48.18 (1.00)	64.21 (1.77)	

CIGA outperforms previous methods under other *realistic shifts* by a significant margin up to **10%**.

Table 3: OOD generalization performance on graph size shifts for real-world graphs in terms of Matthews correlation coefficient.

DATASETS	NCI1	NCI109	PROTEINS	DD	Avg
ERM	0.15 (0.05)	0.16 (0.02)	0.22 (0.09)	0.27 (0.09)	0.20
ASAP	0.16 (0.10)	0.15 (0.07)	0.22 (0.16)	0.21 (0.08)	0.19
GIB	0.13 (0.10)	0.16 (0.02)	0.19 (0.08)	0.01 (0.18)	0.12
DIR	0.21 (0.06)	0.13 (0.05)	0.25 (0.14)	0.20 (0.10)	0.20
IRM	0.17 (0.02)	0.14 (0.01)	0.21 (0.09)	0.22 (0.08)	0.19
V-REX	0.15 (0.04)	0.15 (0.04)	0.22 (0.06)	0.21 (0.07)	0.18
EIIL	0.14 (0.03)	0.16 (0.02)	0.20 (0.05)	0.23 (0.10)	0.19
IB-IRM	0.12 (0.04)	0.15 (0.06)	0.21 (0.06)	0.15 (0.13)	0.16
CNC	0.16 (0.04)	0.16 (0.04)	0.19 (0.08)	0.27 (0.13)	0.20
WL KERNEL	0.39 (0.00)	0.21 (0.00)	0.00 (0.00)	0.00 (0.00)	0.15
GC KERNEL	0.02 (0.00)	0.00 (0.00)	0.29 (0.00)	0.00 (0.00)	0.08
Γ_{1-HOT}	0.17 (0.08)	0.25 (0.06)	0.12 (0.09)	0.23 (0.08)	0.19
Γ_{GIN}	0.24 (0.04)	0.18 (0.04)	0.29 (0.11)	0.28 (0.06)	0.25
Γ_{RPGIN}	0.26 (0.05)	0.20 (0.04)	0.25 (0.12)	0.20 (0.05)	0.23
CIGAv1	0.22 (0.07)	0.23 (0.09)	0.40 (0.06)	0.29 (0.08)	0.29
CIGAV2	0.27 (0.07)	0.22 (0.05)	0.31 (0.12)	0.26 (0.08)	0.27
ORACLE (IID)	0.32 (0.05)	0.37 (0.06)	0.39 (0.09)	0.33 (0.05)	

Causal Interpretable Patterns for Scientific Practice

CIGA finds interesting critical functional groups/sub-molecules in OOD molecular affinity prediction.

(Ji et al., 2022;)

OOD Generalization Challenges Solved by CIGA

Let us trace back the challenges in OOD generalization on graphs...

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

OOD generalization on graphs are **much more challenging!**

- Graphs are highly non-linear 👳
- Attribute-level shifts
- Structure-level shifts
- Mixed shifts in different modes
- Expensive environment labels

Let us considering the data generative model with **Partial Informative Invariant Features**:

Spurious correlation Invariant correlation

(Yu et al., 2021; Miao et al., 2022;)

One line of works aim to generate new environments based on the existing extracted subgraphs:

Environment #1: Class "House"

Extracted "Invariant" Subgraph

(Wu et al., 2022ab; Liu et al., 2022)

One line of works aim to generate new environments based on the existing extracted subgraphs:

Environment #?: Class "House"

35

More severe biases!

(Wu et al., 2022ab; Liu et al., 2022)

Another line of works aim to infer environment labels for learning the underlying invariance:

Environment #?: Class "House"

Inference

00

Environment #?: Class "House"

Environment #1: Class "House"

Environment #2: Class "House"

(Li et al., 2022; Yang et al., 2022)

The "Free Lunch Dilemma" in OOD Generalization on Graphs

Another line of works aim to infer environment labels for learning the underlying invariance:

Environment #1: Class "Grid"

Environment #2: Class "Grid"

What if the underlying invariant subgraph is

(Li et al., 2022; Yang et al., 2022)

Impossibility Results for OOD Generalization on Graphs

?

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Environment #?: Class "House"

Environment #?: Class "House"

No Free Lunch in Graph OOD (Informal) It is fundamentally *impossible* to identify the underlying invariant subgraph without further inductive biases.

What are the minimal sufficient inductive biases for invariant graph representation learning?

Failures of Environment Generation

How can we address **environments generation** failures?

Environment #?: Class "House" Extractor **Environment #?:** Class "House"

Extracted Invariant Subgraph

(Wu et al., 2022ab; Liu et al., 2022)

Failures of Environment Inference

How can we address **environment inference** failures?

Assumption 2 (Variation **Consistency**) For all environments, either spurious correlation is stronger or weaker.

(Li et al., 2022; Yang et al., 2022)

Invariant Graph Learning with Minimal Assumptions

How can we address **environment inference** failures?

Assumption 1 (Variation Sufficiency) For any spurious subgraph, there exists two underlying environments, such that the spurious correlation varies.

Assumption 2 (Variation Consistency) For all environments, either spurious correlation is stronger or weaker.

Environment Inference?

Invariant correlation stronger: CIGA (Chen et al., 2022)

(Lin et al., 2022; Fan et al., 2022; Chen et al., 2022)

GALA: invariant GrAph Learning Assistant

Improving the contrastive invariant subgraph extraction via an Environment Assistant:

Proof-of-Concept Experiments

Theorem 1 (Informal)

Given the same data generation process, and the aforementioned variation sufficiency and variation consistency assumptions, when the environment assistant model learns properly distinguishes the variations of the spurious subgraphs, GALA provably identifies the invariant subgraph for OOD generalization.

Datasets	$\{0.8, 0.6\}$	$\{0.8, 0.7\}$	$\{0.8, 0.9\}$	$\{0.7, 0.9\}$	Avg.
ERM	$77.33{\scriptstyle \pm 0.47}$	$75.65{\scriptstyle \pm 1.62}$	$51.37{\scriptstyle\pm1.20}$	$42.73{\scriptstyle\pm3.82}$	61.77
IRM	$78.32{\scriptstyle \pm 0.70}$	$75.13{\scriptstyle \pm 0.77}$	$50.76{\scriptstyle \pm 2.56}$	$41.32{\scriptstyle \pm 2.50}$	61.38
V-Rex	$77.69{\scriptstyle \pm 0.38}$	$74.96{\scriptstyle \pm 1.40}$	$49.47{\scriptstyle \pm 3.36}$	$41.65{\scriptstyle \pm 2.78}$	60.94
IB-IRM	$78.00{\scriptstyle \pm 0.68}$	$73.93{\scriptstyle \pm 0.79}$	$50.93{\scriptstyle \pm 1.87}$	$42.05{\scriptstyle \pm 0.79}$	61.23
EIIL	$76.98{\scriptstyle \pm 1.24}$	$74.25{\scriptstyle \pm 1.74}$	$51.45{\scriptstyle \pm 4.92}$	$39.71{\scriptstyle\pm2.64}$	60.60
XGNN	$83.84{\scriptstyle \pm 0.59}$	$83.05{\scriptstyle\pm0.20}$	$53.37{\scriptstyle\pm1.32}$	$38.28{\scriptstyle\pm1.71}$	64.63
GREA	$82.86{\scriptstyle \pm 0.50}$	$82.72{\scriptstyle\pm0.50}$	$50.34{\scriptstyle \pm 1.74}$	$39.01{\scriptstyle\pm1.21}$	63.72
GSAT	$80.54{\scriptstyle \pm 0.88}$	$78.11 {\pm} 1.23$	$48.63{\scriptstyle \pm 2.18}$	$36.62{\scriptstyle \pm 0.87}$	63.32
CAL	$76.98{\scriptstyle\pm6.03}$	$62.95{\scriptstyle\pm8.58}$	$51.57{\scriptstyle\pm6.33}$	$46.23{\scriptstyle\pm3.93}$	59.43
MoleOOD	$49.93{\scriptstyle \pm 2.25}$	$49.85{\scriptstyle \pm 7.31}$	$38.49{\scriptstyle \pm 4.25}$	$34.81{\scriptstyle \pm 1.65}$	43.27
GIL	$83.51{\scriptstyle \pm 0.41}$	$82.67{\scriptstyle\pm1.18}$	$51.76{\scriptstyle \pm 4.32}$	$40.07{\scriptstyle\pm2.61}$	64.50
DisC	$60.47{\scriptstyle\pm17.9}$	$54.29{\scriptstyle\pm15.0}$	$45.06{\scriptstyle\pm7.82}$	$39.42{\scriptstyle\pm8.59}$	50.81
CIGA	$84.03{\scriptstyle\pm0.53}$	$83.21{\scriptstyle\pm0.30}$	$57.87{\scriptstyle\pm3.38}$	$43.62{\scriptstyle\pm3.20}$	67.18
GALA	84.27 ± 0.34	83.65 ± 0.44	76.42±3.53	72.50±1.06	79.21
Oracle	$84.73{\scriptstyle\pm0.36}$	$85.42{\scriptstyle \pm 0.25}$	$84.28{\scriptstyle \pm 0.15}$	$78.38{\scriptstyle \pm 0.19}$	

Stronger invariant correlations

Stronger spurious correlations

Real-World Experiments

distribution shifts on a number of realistic graph benchmarks:

Datasets	EC50-Assay	EC50-Sca	EC50-Size	Ki-Assay	Ki-Sca	Ki-Size	CMNIST-sp	Graph-SST2	Avg.(Ranl
ERM	76.42 ± 1.59	$64.56{\scriptstyle \pm 1.25}$	61.61 ± 1.52	$74.61{\scriptstyle \pm 2.28}$	$69.38{\scriptstyle \pm 1.65}$	$76.63{\scriptstyle \pm 1.34}$	$21.56{\scriptstyle \pm 5.38}$	$81.54{\scriptstyle \pm 1.13}$	65.79 (6.5
IRM	$77.14{\scriptstyle \pm 2.55}$	$64.32{\scriptstyle\pm0.42}$	$62.33{\scriptstyle \pm 0.86}$	$75.10{\scriptstyle \pm 3.38}$	$69.32{\scriptstyle\pm1.84}$	$76.25{\scriptstyle\pm0.73}$	$20.25{\scriptstyle\pm3.12}$	$82.52{\scriptstyle \pm 0.79}$	65.91 (6.1
V-Rex	$75.57{\scriptstyle\pm2.17}$	$64.73{\scriptstyle \pm 0.53}$	$62.80{\scriptstyle \pm 0.89}$	$74.16{\scriptstyle \pm 1.46}$	$71.40{\scriptstyle \pm 2.77}$	$76.68{\scriptstyle \pm 1.35}$	$30.71{\scriptstyle\pm11.8}$	$81.11 {\pm} 1.37$	67.15 (5.2
IB-IRM	$64.70{\scriptstyle \pm 2.50}$	$62.62{\scriptstyle \pm 2.05}$	$58.28{\scriptstyle \pm 0.99}$	$71.98{\scriptstyle \pm 3.26}$	$69.55{\scriptstyle \pm 1.66}$	$70.71{\scriptstyle\pm1.95}$	$23.58{\scriptstyle \pm 7.96}$	$81.56{\scriptstyle \pm 0.82}$	62.87 (10
EIIL	$64.20{\scriptstyle \pm 5.40}$	$62.88{\scriptstyle \pm 2.75}$	$59.58{\scriptstyle \pm 0.96}$	$74.24{\scriptstyle \pm 2.48}$	$69.63{\scriptstyle \pm 1.46}$	$76.56{\scriptstyle \pm 1.37}$	$23.55{\scriptstyle \pm 7.68}$	$82.46{\scriptstyle \pm 1.48}$	64.14 (8.0
XGNN	$72.99{\scriptstyle \pm 2.56}$	63.62 ± 1.35	$62.55{\scriptstyle\pm0.81}$	72.40 ± 3.05	72.01 ± 1.34	$73.15{\scriptstyle \pm 2.83}$	20.96 ± 8.00	$82.55{\scriptstyle\pm0.65}$	65.03 (7.1
GREA	$66.87 {\pm} 7.53$	$63.14{\scriptstyle \pm 2.19}$	$59.20{\scriptstyle \pm 1.42}$	$73.17{\scriptstyle\pm1.80}$	$67.82{\scriptstyle \pm 4.67}$	$73.52{\scriptstyle \pm 2.75}$	$12.77{\scriptstyle\pm1.71}$	$82.40{\scriptstyle\pm1.98}$	62.36 (10)
GSAT	$76.07{\scriptstyle\pm1.95}$	$63.58{\scriptstyle \pm 1.36}$	$61.12{\scriptstyle \pm 0.66}$	72.26 ± 1.76	$70.16{\scriptstyle \pm 0.80}$	$75.78{\scriptstyle \pm 2.60}$	$15.24{\scriptstyle \pm 3.72}$	$80.57{\scriptstyle\pm0.88}$	64.35 (8.6
CAL	$75.10{\scriptstyle \pm 2.71}$	$64.79{\scriptstyle \pm 1.58}$	$63.38{\scriptstyle \pm 0.88}$	$75.22{\scriptstyle\pm1.73}$	$71.08{\scriptstyle \pm 4.83}$	$72.93{\scriptstyle\pm1.71}$	$23.68{\scriptstyle \pm 4.68}$	$82.38{\scriptstyle\pm1.01}$	66.07 (5.3
DisC	$61.94{\scriptstyle \pm 7.76}$	$54.10{\scriptstyle \pm 5.69}$	$57.64{\scriptstyle \pm 1.57}$	$54.12{\scriptstyle\pm8.53}$	$55.35{\scriptstyle \pm 10.5}$	$50.83{\scriptstyle \pm 9.30}$	$50.26{\scriptstyle \pm 0.40}$	$76.51{\scriptstyle \pm 2.17}$	56.59 (12)
MoleOOD	$61.49{\scriptstyle \pm 2.19}$	62.12 ± 1.91	$58.74{\scriptstyle\pm1.73}$	$75.10{\scriptstyle \pm 0.73}$	$60.35{\scriptstyle \pm 11.3}$	$73.69{\scriptstyle \pm 2.29}$	$21.04{\scriptstyle\pm3.36}$	$81.56{\scriptstyle \pm 0.35}$	61.76 (10
GIL	$70.56{\scriptstyle \pm 4.46}$	$61.59{\scriptstyle \pm 3.16}$	$60.46{\scriptstyle \pm 1.91}$	$75.25{\scriptstyle\pm1.14}$	$70.07{\scriptstyle\pm4.31}$	$75.76{\scriptstyle \pm 2.23}$	$12.55{\scriptstyle\pm1.26}$	$83.31{\scriptstyle\pm0.50}$	63.69 (8.0
CIGA	$75.03{\scriptstyle \pm 2.47}$	65.41 ± 1.16	$64.10{\scriptstyle \pm 1.08}$	$73.95{\scriptstyle \pm 2.50}$	$71.87{\scriptstyle\pm3.32}$	$74.46{\scriptstyle \pm 2.32}$	$15.83{\scriptstyle \pm 2.56}$	$82.93{\scriptstyle\pm0.63}$	65.45 (5.8
GALA	77.56 ± 2.88	66.28 ± 0.45	$\textbf{64.25}{\scriptstyle \pm 1.21}$	77.92±2.48	73.17 ± 0.88	$\textbf{77.40}{\scriptstyle \pm 2.04}$	68.94 ± 0.56	83.60 ± 0.66	73.64 (1.0
Oracle	$84.77{\scriptstyle\pm0.58}$	$82.66{\scriptstyle \pm 1.19}$	$84.53{\scriptstyle\pm0.60}$	$91.08{\scriptstyle \pm 1.43}$	$88.58{\scriptstyle \pm 0.64}$	$92.50{\scriptstyle \pm 0.53}$	$67.76{\scriptstyle \pm 0.60}$	$91.40{\scriptstyle \pm 0.26}$	

[†]Averaged rank is also reported in the parentheses because of dataset heterogeneity. A lower rank is better.

GALA consistently improves the OOD generalization performance under various real-world graph

Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are **iid**., i.e., independently sampled from an identical distribution, while data is often **OOD**, i.e., out-of-distribution, in real-world applications.

Causal Representation Learning on Graphs: [NeurIPS'22 Spotlight, NeurIPS'23a]

Useful Properties of the Causal Representations: OOD Generalizability [NeurIPS'22, 23a], Adversarial Robustness [ICLR'22], Interpretability [ICML'24a]

Optimization & Feature Learning schemes for Causal Representation Learning: [ICLR'23a, NeurIPS'23b]

Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are **iid**., i.e., independently sampled from an identical distribution, while data is often **OOD**, i.e., out-of-distribution, in real-world applications.

Causal Representation Learning on Graphs: [NeurIPS'22 Spotlight, NeurIPS'23a]

Useful Properties of the Causal Representations: OOD Generalizability [NeurIPS'22, 23a], Adversarial Robustness [ICLR'22], Interpretability [ICML'24a]

Optimization & Feature Learning schemes for Causal Representation Learning: [ICLR'23a, NeurIPS'23b]

Graph adversarial attacks aim to degenerate the performance by maliciously perturbing graphs:

(Zügner et al., 2018)

Adversarial Objective: $\min \mathscr{L}_{atk}(f_{\theta^*}(G')), \ s.t. \|G' - G\| \leq \Delta$ Graph Modification Attack (GMA):perturbation budgets $\bigtriangleup_A + \bigtriangleup_X \leq \Delta \in \mathbb{Z}, \|A' - A\|_0 \leq \bigtriangleup_A \in \mathbb{Z}, \|X' - X\|_{\infty} \leq \epsilon \in \mathbb{R}$ $\widecheck{\Box}$ $\overbrace{\frown}$ Sometimes ExpensiveModifying edgesPerturbing node features

Graph adversarial attacks aim to degenerate the performance by maliciously perturbing graphs:

(Zügner et al., 2018)

Adversarial Objective: $\min \mathscr{L}_{atk}(f_{\theta^*}(G')), \text{ s.t.} \|G' - G\| \leq \Delta$ perturbation budgets **Graph Injection Attack (GIA):** $X' = \begin{bmatrix} X \\ X_{atk} \end{bmatrix}, A' = \begin{bmatrix} A & A_{atk} \\ A_{atk}^T & O_{atk} \end{bmatrix}, \quad |V_{atk}| \le \triangle \in \mathbb{Z}, \ 1 \le d_u \le b \in \mathbb{Z}, X_u \in \mathcal{D}_X \subseteq \mathbb{R}^d, \forall u \in V_{atk} \in \mathbb{Z}$ Carefully crafted node features Practical Injecting nodes Carefully injected connections

(Zou et al., 2020)

GMA vs. GIA

We compare GMA and GIA in a unified setting.

We adopt a unified setting, which is also used by Graph Robustness Benchmark (Zheng et al., NeurIPS 2021).

Evasion:	Attack happens at testing time
Inductive:	Test nodes and corresponding during training, i.e., $G_{\text{train}} \subseteq G$, G
Blackbox:	The adversary can not access t
	Find out more about t

edges are invisible to the model $G_{\text{test}} = G'$.

the architecture or the parameters of the target model.

the motivation for adopting this setting in our paper :)

In general, GIA is more powerful than GMA.

Illustration of \mathcal{M}_2 mapping

Theorem 1 (GIA is more harmful than GMA)

 $\forall \triangle_{\text{GMA}} \ge 0, \exists \triangle_{\text{GIA}} \le \triangle_{\text{GMA}},$

 $\mathscr{L}_{\mathrm{atk}}(f_{\theta}(G'_{\mathrm{GIA}}))$

where G'_{GIA} and G'_{GMA} are perturbed graphs generated by GIA and GMA, respectively.

GMA vs. GIA with \mathcal{M}_2

Given moderate perturbation budgets Δ_{GIA} for GIA and Δ_{GMA} for GMA, that is, let $\Delta_{\text{GIA}} \leq \Delta_{\text{GMA}} \ll |V| \leq |E|$, for a fixed linearized GNN f_{θ} trained on G, assume that G has no isolated nodes, and both GIA and GMA follow the optimal strategy, then,

$$)) - \mathscr{L}_{atk}(f_{\theta}(G'_{GMA})) \leq 0,$$

In general, GIA is more powerful than GMA. But, what is the price?

Definition 3 (Node-Centric Homophily) *u* and the aggregated features of its neighbors*:

 $h_{\mu} = \operatorname{sim}(r_{\mu}, X_{\mu})$

where d_{μ} is the degree of node u and sim(\cdot) is a similarity metric, e.g., cosine similarity.

Given the example of \mathcal{M}_2 , assume GIA uses PGD to optimize X_{w} iteratively, we find:

 $sim(X_{\mu}, X_{\nu})^{(t+1)} \le sim(X_{\mu}, X_{\nu})^{(t)},$

where t is the number of optimization steps and $sim(\cdot)$ is the cosine similarity.

The homophily of a node *u* can be defined with the similarity between the features of node

$$, r_{u} = \sum_{j \in \mathcal{N}(u)} \frac{1}{\sqrt{d_{j}d_{u}}} X_{j},$$

Adversarial Attack on Graph Neural Networks In general, GIA is more powerful than GMA. But, what is the price?

Homophily changes before and after attacks

Definition 3 (Homophily Defenders) The homophily defenders can be implemented via edge pruning*: where $\left[\begin{array}{c} u, v \end{array} \right]$ elaborates the pruning condition for edge (u, v).

GIA provably leads more damage to the homophily of the original graph than GMA

 $H_u^{(k)} = \operatorname{READOUT}(W_k \cdot \operatorname{AGG}(\mathbb{I}_{\operatorname{con}}(u, v) \{H_v^{(k-1)}\} \mid v \in \mathcal{N}(u) \cup \{u\})),$

Adversarial Attack on Graph Neural Networks In general, GIA is more powerful than GMA. But, what is the price?

Homophily changes before and after attacks

Theorem 2 (GIA loses power when against homophily defenders) Given conditions in Theorem 1, consider a GIA attack, which (i) is mapped by \mathcal{M}_2 from from a GMA attack that only performs edge addition perturbations, and (ii) uses a linearized GNN trained with at least one node from each class in G as the surrogate model, and (iii) optimizes the malicious node features with PGD. Assume that G has no isolated node, and has node features as $X_u = \frac{C}{C-1}e_{Y_u} - \frac{1}{C-1}\mathbf{1} \in \mathbb{R}^d$ where Y_u is the label of node u and $e_{Y_u} \in \mathbb{R}^d$ is a one-hot vector with the Y_u -th entry being 1 and others being 0. Let the minimum similarity for any pair of nodes connected in G be $s_G = \min_{(u,v) \in E} \frac{\sin(X_u, X_v)}{\sup(u,v) \in E}$ implemented with cosine similarity. For a homophily defender g_{θ} that prunes edges (u, v) if $sim(X_u, X_v) \leq s_G$, we have:

New Definition of Adversarial Attack on Graphs

We rethink the ill-defined unnoticeability constraints for prevalent graph adversarial attacks...

Prediction: Pig

Unnoticeable Adversarial noise Prediction: Airliner (Szegedy et al., 2014; Goodfellow et al., 2015; Kolter and Madry et al. 2019)

HAO: Harmonious Adversarial Objective

We propose a new objective respecting the homophily constraints.

Definition 5 (Harmonious Adversarial Objective (HAO)) Observing the homophily (Definition. 4) is differentiable with respect to X, we can integrate it into the original adversarial objective as*:

 $\mathscr{L}^h_{\mathrm{atk}}(f_{\theta^*}(G')$ $\min_{\|G'-G\|\leq \triangle}$ where C(G, G') is a regularization term based on homophily and $\lambda \geq 0$ is the corresponding weight.

Illustration of GIA at node *u*

$$)) = \mathscr{L}_{\mathrm{atk}}(f_{\theta^*}(G')) - \lambda C(G, G'),$$

HAO: Harmonious Adversarial Objective

strategies can further advance the state of the art.

Homo: Homophily Defenders

Vanilla: Vanilla GNNs, e.g., GCN, GAT, GraphSage.

Robust: Robust GNN models, or GNN models with robust tricks such as layer normalisation, or adversarial training.

Combo: Robust GNN models with robust tricks such as layer normalisation, or adversarial training.

			Cora (↓
	HAO	Homo	Robust
Clean		85.74	86.00
PGD		83.08	83.08
PGD	✓	52.60	62.60
MetaGIA [†]		83.61	83.61
MetaGIA [†]	\checkmark	49.25	69.83
$AGIA^{\dagger}$		83.44	83.44
AGIA [†]	✓	47.24	61.59
TDGIA		83.44	83.44
TDGIA	\checkmark	56.95	73.38
ATDGIA		83.07	83.07
ATDGIA	✓	42.18	70.30
MLP			61.75

⁺The lower number indicates better attack performance. [†]Runs with SeqGIA framework on Computers and Arxiv.

We evaluate with **38** defense models and report the *maximum* mean test robustness from multiple runs.

HAO significantly improves the performance of all attacks on all datasets up to 30%. Adaptive injection

$Citeseer(\downarrow)$ Computers(\downarrow) $Arxiv(\downarrow)$ Homo Robust Combo Homo Robust Combo Homo Robust Combo Combo 70.7771.2787.2974.8575.4675.8793.1793.1793.3271.4074.7074.7075.1984.9191.4168.1885.7484.9168.1871.1173.0487.8355.3862.8968.6877.9969.0569.0579.3379.3374.7091.4174.7075.1584.91 84.91 71.0985.8668.4768.4768.0471.2576.8068.0478.9678.9690.2557.0563.3069.9774.7275.2985.2168.0771.0185.7874.7285.2191.4068.0786.0259.3275.2570.2470.2471.8075.1475.1465.6269.9285.7274.7674.7675.2688.3288.3291.4064.4964.4970.9779.4572.5190.4249.3660.9160.9174.7774.7760.7263.5785.3975.1266.9566.9571.0274.7286.0391.4174.7286.0361.08**71.22** 80.86 80.86 84.6063.3064.3161.08**45.59** 76.8765.5584.1452.49

Table 1: Performance of non-targeted attacks against different models

HAO: Harmonious Adversarial Objective

HAO significantly improves the performance of all attacks on all datasets up to 30%. Adaptive injection strategies can further advance the state of the art.

Homo: Homophily Defenders

Vanilla: Vanilla GNNs, e.g., GCN, GAT, GraphSage.

Robust: Robust GNN models, or GNN models with robust tricks such as layer normalisation, or adversarial training.

Combo: Robust GNN models with robust tricks such as layer normalisation, or adversarial training.

		$Computers(\downarrow)$			Arxiv(↓)			Aminer(↓)			Reddit(↓)		
	HAO	Homo	Robust	Combo	Homo	Robust	Combo	Homo	Robust	Combo	Homo	Robust	Com
Clean		92.68	92.68	92.83	69.41	71.59	72.09	62.78	66.71	66.97	94.05	97.15	97
PGD PGD	\checkmark	$\begin{array}{c} 88.13 \\ 71.78 \end{array}$	$\begin{array}{c} 88.13 \\ 71.78 \end{array}$	$\begin{array}{c} 91.56\\ 85.81 \end{array}$	69.19 36.06	69.19 37 .22	$\begin{array}{c} 71.31 \\ 69.38 \end{array}$	$\begin{array}{c} 53.16\\ 34.62\end{array}$	$\begin{array}{c} 53.16\\ 34.62 \end{array}$	$\begin{array}{c} 56.31\\ 39.47\end{array}$	$\frac{92.44}{56.44}$	$\frac{92.44}{86.12}$	93. 84 .
MetaGIA [†] MetaGIA [†] AGIA [†] AGIA [†]	√ √	87.67 <u>70.21</u> 87.57 69.96	87.67 <u>71.61</u> 87.57 71.58	$91.56 \\ 85.83 \\ 91.58 \\ 85.72$	69.28 38.44 66.19 38.84	$ \begin{array}{r} 69.28 \\ \underline{38.44} \\ 66.19 \\ 38.84 \end{array} $	$71.22 \\ 48.06 \\ 70.06 \\ 68.97$	$\begin{array}{c} 48.97 \\ 41.12 \\ 50.50 \\ 35.94 \end{array}$	$\begin{array}{c} 48.97 \\ 41.12 \\ 50.50 \\ 35.94 \end{array}$	$52.35 \\ 45.16 \\ 53.69 \\ 42.66$	92.40 46.75 91.62 80.69	92.40 90.06 91.62 88.84	93 90 93 90
TDGIA TDGIA ATDGIA ATDGIA	√ √	87.21 71.39 87.85 72.00	87.21 71.62 87.85 72.53	91.56 77.15 91.56 <u>78.35</u>	$\begin{array}{r} 63.66 \\ 42.56 \\ 66.12 \\ \underline{38.28} \end{array}$	$63.66 \\ 42.56 \\ 66.12 \\ 40.81$	$71.06 \\ \underline{42.53} \\ 71.16 \\ 39.47$	$51.34 \\ \underline{25.78} \\ 50.87 \\ 22.50$	$51.34 \\ \underline{25.78} \\ 50.87 \\ 22.50$	$54.82 \\ \underline{29.94} \\ 53.68 \\ 28.91$	$\begin{array}{c} 92.19 \\ 78.16 \\ 91.25 \\ 64.09 \end{array}$	92.19 85.06 91.25 89.06	93 <u>88</u> 93 88
MLP			84.11			52.49			32.80			70.69	

* The lower number indicates better attack performance. 'Runs with SeqGIA framework.

We evaluate with **38** defense models and report the *maximum* mean test robustness from multiple runs.

 Table 2: Performance of targeted attacks against different models

Causality of HAO for Graph Adversarial Attacks

GIA without HAO essentially breaks the causal relations between C and Y:

GIA with HAO that retains the homophily unnoticeability, reveals the true underlying vulnerability of **GNNs** and improves the robustness of GNNs:

Table 5.4: Performance of adversarial training methods under various graph adversarial attacks.

		Clean	PC	GD	TD	GIA	Meta	GIA		
	HAO		Paratoria (**	\checkmark		\checkmark		\checkmark	mean	worst
GCN		84.95	38.55	38.55	40.67	43.78	38.43	38.80	46.25	38.43
GCN+FLAG		81.84	59.95	57.71	59.82	54.60	59.82	54.72	61.21	54.60
GCN+PGD		86.19	72.76	72.13	80.34	75.49	70.77	64.92	74.66	64.92
GCN+PGD	\checkmark	86.94	72.88	72.63	81.21	79.22	72.01	68.78	76.24	68.78
GCN+TDGIA		85.69	66.29	65.29	75.74	71.76	64.92	58.83	69.79	58.83
GCN+TDGIA	✓	86.56	70.14	69.40	79.35	75.87	69.02	65.42	73.68	65.42
GNNGuard		85.07	84.20	84.70	84.45	53.73	84.82	43.15	74.30	43.15
GNNGuard+FLAG		84.57	84.32	84.32	84.32	69.77	84.45	64.92	79.52	64.92
GNNGuard+PGD		86.44	86.69	85.69	86.56	71.51	86.19	57.08	80.02	57.08
GNNGuard+PGD	\checkmark	86.44	86.31	86.06	86.19	77.86	86.31	69.77	82.71	69.77
GNNGuard+TDGIA		85.94	85.94	85.57	85.82	71.14	85.69	56.46	79.51	56.46
GNNGuard+TDGIA	\checkmark	85.57	85.69	85.57	85.32	76.61	85.57	65.17	81.36	65.17

(b) Adversarial graph generation.

Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are **iid**., i.e., independently sampled from an identical distribution, while data is often **OOD**, i.e., out-of-distribution, in real-world applications.

Causal Representation Learning on Graphs: [NeurIPS'22 Spotlight, NeurIPS'23a]

Useful Properties of the Causal Representations: OOD Generalizability [NeurIPS'22, 23a], Adversarial Robustness [ICLR'22], Interpretability [ICML'24a]

Optimization & Feature Learning schemes for Causal Representation Learning: [ICLR'23a, NeurIPS'23b]

Interpretable Graph Neural Networks

Interpretability is crucial for a variety of scientific tasks:

Scientific Tasks in 3D Geometric Graphs

(Duvenaud et al., 2015; Yu et al., 2021; Miao et al., 2022; Miao et al., 2023)

Interpretable Graph Neural Networks

Interpretability and generalizability are two sides of the same coin, when considering distribution shifts that are everywhere:

Environment #1: Class "House"

Extracted Invariant Subgraph

Interpretable GNNs computes sampling probability using the attention mechanism:

Step1: Soft Subgraph Extraction

The sampling probability accumulates a subgraph distribution, where each subgraph corresponds to a label distribution: **Subgraph Multilinear Extension**

Step1: Subgraph Extraction

Step2: Subgraph Classification

Existing Interpretable GNNs directly take the expected soft subgraph to predict the label: **Subgraph Multilinear Extension**

Step1: Subgraph Extraction

Step2: Subgraph Classification

Given any non-linear GNNs, or linear GNNs with more than two layers, soft message passing can not approximate the multilinear extension: **Subgraph Multilinear Extension**

Step1: Subgraph Extraction

Step2: Subgraph Classification

Failing to approximate SubMT results in unfaithful interpretations:

(a) SCM of XGNNs.

SubMT approximation failure shown with counterfactual fidelty

(b) SubMT on BA-2Motifs.

(c) SubMT on Mutag.

GMT: Graph Multilinear Network We propose GMT to bridges the gap by approximating and distilling the SubMT into soft message passing:

Step1: Subgraph Extraction

Subgraph Multilinear Extension

Step2: Subgraph Classification

GMT: Graph Multilinear Network

GMT brings up to 10% AUROC improvements in interpretability and up to 10% Acc improvements in generalizability on regular graphs.

GNN	Method	BA-2MOTIFS	BA-2MOTIFS MUTAG		S	SPURIOUS-MOTIF			
					b = 0.5	b = 0.7	b = 0.9		
	GNNEXPLAINER	$67.35{\scriptstyle \pm 3.29}$	$61.98{\scriptstyle \pm 5.45}$	$59.01 {\pm} 2.04$	$62.62{\scriptstyle \pm 1.35}$	$62.25{\scriptstyle \pm 3.61}$	$58.86{\scriptstyle \pm 1.93}$		
	PGEXPLAINER	$84.59{\scriptstyle \pm 9.09}$	$60.91 {\pm} 17.10$	$69.34{\scriptstyle \pm 4.32}$	$69.54{\scriptstyle \pm 5.64}$	$72.33{\scriptstyle \pm 9.18}$	$72.34{\scriptstyle \pm 2.91}$		
GIN	GRAPHMASK	$92.54{\scriptstyle\pm8.07}$	$62.23{\scriptstyle\pm9.01}$	$73.10{\scriptstyle \pm 6.41}$	$72.06{\scriptstyle\pm5.58}$	$73.06{\scriptstyle \pm 4.91}$	$66.68{\scriptstyle\pm6.96}$		
	IB-SUBGRAPH	$86.06 {\pm} 28.37$	$91.04{\scriptstyle\pm6.59}$	$51.20{\scriptstyle\pm5.12}$	$57.29{\scriptstyle\pm14.35}$	$62.89 {\pm} 15.59$	$47.29{\scriptstyle\pm13.39}$		
	DIR	$82.78{\scriptstyle\pm10.97}$	$64.44{\scriptstyle\pm28.81}$	$32.35{\scriptstyle\pm9.39}$	78.15 ± 1.32	$77.68{\scriptstyle\pm1.22}$	$49.08{\scriptstyle \pm 3.66}$		
	GSAT	$98.85{\scriptstyle \pm 0.47}$	$99.35{\scriptstyle \pm 0.95}$	$80.47 {\pm} 1.86$	$74.49{\scriptstyle \pm 4.46}$	$72.95{\scriptstyle\pm6.40}$	$65.25{\scriptstyle\pm4.42}$		
GIN	GMT- LIN	$98.36{\scriptstyle \pm 0.56}$	$99.86{\scriptstyle \pm 0.09}$	$82.98 {\pm} {\scriptstyle 1.49}$	$76.06{\scriptstyle\pm6.39}$	$76.50{\scriptstyle \pm 5.63}$	80.57 ± 2.59		
	GMT-SAM	99.62 ± 0.11	99.87 ± 0.11	86.50 ± 1.80	$85.50{\scriptstyle \pm 2.40}$	84.67 ± 2.38	$73.49{\scriptstyle \pm 5.33}$		
	GSAT	$89.35{\scriptstyle \pm 5.41}$	$99.00{\scriptstyle \pm 0.37}$	$85.72{\pm}1.10$	$79.84{\scriptstyle \pm 3.21}$	$79.76{\scriptstyle\pm3.66}$	$80.70{\scriptstyle \pm 5.45}$		
PNA	GMT- LIN	$95.79{\scriptstyle\pm7.30}$	$99.58{\scriptstyle \pm 0.17}$	$85.02{\scriptstyle\pm1.03}$	$80.19{\scriptstyle \pm 2.22}$	$84.74 {\pm} 1.82$	$85.08{\scriptstyle \pm 3.85}$		
	GMT-SAM	$99.60{\scriptstyle \pm 0.48}$	99.89 ± 0.05	87.34 ± 1.79	88.27 ± 1.71	86.58 ± 1.89	85.26 ± 1.92		

Table 1. Interpretation Performance (AUC) on regular graphs. Results with the mean-1*std larger than the best baselines are shadowed.

Table 2. Prediction Performance (Acc.) on regular graphs. The shadowed entries are the results with the mean-1*std larger than the mean of the corresponding best baselines.

GNN	Method	MOLHIV (AUC)	GRAPH-SST2	MNIST-75sp	SPURIOUS-MOTIF			
	MEINOD				b = 0.5	b = 0.7	b = 0.9	
GIN	GIN IB-subgraph DIR	$76.69{\scriptstyle \pm 1.25 \\ 76.43{\scriptstyle \pm 2.65 \\ 76.34{\scriptstyle \pm 1.01 } }$	$\begin{array}{r} 82.73 {\scriptstyle \pm 0.77} \\ 82.99 {\scriptstyle \pm 0.67} \\ 82.32 {\scriptstyle \pm 0.85} \end{array}$	$\begin{array}{c} 95.74 {\scriptstyle \pm 0.36} \\ 93.10 {\scriptstyle \pm 1.32} \\ 88.51 {\scriptstyle \pm 2.57} \end{array}$	$\begin{array}{c} 39.87 {\scriptstyle \pm 1.30} \\ 54.36 {\scriptstyle \pm 7.09} \\ 45.49 {\scriptstyle \pm 3.81} \end{array}$	$\begin{array}{c} 39.04 {\scriptstyle \pm 1.62} \\ 48.51 {\scriptstyle \pm 5.76} \\ 41.13 {\scriptstyle \pm 2.62} \end{array}$	$\begin{array}{c} 38.57 {\scriptstyle \pm 2.31} \\ 46.19 {\scriptstyle \pm 5.63} \\ 37.61 {\scriptstyle \pm 2.02} \end{array}$	
GIN	GSAT GMT-lin GMT-sam	$\begin{array}{c} 76.12 {\scriptstyle \pm 0.91} \\ 76.87 {\scriptstyle \pm 1.12} \\ \textbf{77.22} {\scriptstyle \pm 0.93} \end{array}$	$\begin{array}{c} 83.14 {\pm} 0.96 \\ 83.19 {\pm} 1.28 \\ \textbf{83.62} {\pm} 0.50 \end{array}$	$\begin{array}{c} 96.20{\scriptstyle\pm1.48}\\ 96.01{\scriptstyle\pm0.25}\\ \textbf{96.50}{\scriptstyle\pm0.19}\end{array}$	$\begin{array}{c} 47.45{\scriptstyle\pm5.87}\\ 47.69{\scriptstyle\pm4.93}\\ \textbf{60.09}{\scriptstyle\pm2.40}\end{array}$	$\begin{array}{c} 43.57 {\scriptstyle \pm 2.43} \\ 53.11 {\scriptstyle \pm 4.12} \\ 54.34 {\scriptstyle \pm 4.04} \end{array}$	$\begin{array}{c} 45.39{\scriptstyle\pm 5.02} \\ 46.22{\scriptstyle\pm 4.18} \\ \textbf{55.83}{\scriptstyle\pm 5.68} \end{array}$	
PNA	PNA GSAT GMT-lin GMT-sam	$78.91{\scriptstyle\pm1.04}\\79.82{\scriptstyle\pm0.67}\\80.05{\scriptstyle\pm0.71}\\80.58{\scriptstyle\pm0.83}$	$\begin{array}{c} 79.87 \pm 1.02 \\ 80.90 \pm 0.37 \\ 81.18 \pm 0.47 \\ \textbf{82.36} \pm 0.96 \end{array}$	$\begin{array}{c} 87.20 {\pm} 5.61 \\ 93.69 {\pm} 0.73 \\ 94.44 {\pm} 0.49 \\ \textbf{95.75} {\pm} 0.42 \end{array}$	$\begin{array}{c} 68.15 \pm 2.39 \\ 68.41 \pm 1.76 \\ 69.33 \pm 1.42 \\ \textbf{71.98} \pm 3.44 \end{array}$	$\begin{array}{c} 66.35{\pm}3.34\\ 67.78{\pm}3.22\\ 64.49{\pm}3.51\\ \textbf{69.68}{\pm}3.99\end{array}$	$\begin{array}{c} 61.40{\scriptstyle\pm3.56}\\ 51.51{\scriptstyle\pm2.98}\\ 58.30{\scriptstyle\pm6.61}\\ 67.90{\scriptstyle\pm3.60} \end{array}$	

GMT: Graph Multilinear Network

GMT brings up to 7% AUROC and 18% Precision@12 improvements in interpretability and up to 4% Acc improvements in generalizability on geometric graphs.

	ACTSTRACK		TAU3MU		SYNMOL		PLBIND	
	ROC AUC	Prec@12						
RANDOM	50	21	50	35	50	31	50	45
GRADGEO	$69.31{\scriptstyle \pm 0.89}$	$33.54{\scriptstyle \pm 1.23}$	$78.04{\scriptstyle \pm 0.57}$	$64.18{\scriptstyle \pm 1.25}$	$76.38{\scriptstyle \pm 4.96}$	$64.72{\scriptstyle\pm3.75}$	$58.11 {\pm} 2.91$	$64.78{\scriptstyle \pm 4.73}$
BernMask	$54.23{\scriptstyle \pm 4.31}$	$20.46{\scriptstyle \pm 5.46}$	$71.58{\scriptstyle \pm 0.69}$	$60.51{\pm}0.76$	$76.38{\scriptstyle \pm 4.96}$	$64.72 {\pm} 3.75$	$52.23{\scriptstyle \pm 4.45}$	$41.50{\scriptstyle \pm 9.77}$
BERNMASK-P	$22.87{\scriptstyle\pm3.33}$	$11.29{\pm}5.46$	$70.72{\scriptstyle\pm5.10}$	$55.50{\scriptstyle\pm6.26}$	$87.06{\scriptstyle\pm7.12}$	$77.11 {\pm} 7.58$	$51.98{\scriptstyle\pm4.66}$	$59.20{\scriptstyle \pm 5.48}$
POINTMASK	$49.20{\scriptstyle \pm 1.51}$	$20.54 {\pm} 1.71$	$55.93{\scriptstyle \pm 4.85}$	$39.65{\scriptstyle \pm 7.14}$	$66.46{\scriptstyle\pm6.86}$	$53.93{\scriptstyle \pm 1.94}$	$50.00{\pm}0.00$	$45.10{\pm}0.00$
GRADGAM	$75.19{\scriptstyle \pm 1.91}$	$75.94{\scriptstyle \pm 2.16}$	$76.18{\scriptstyle \pm 2.62}$	$62.05{\scriptstyle \pm 2.16}$	$60.31{\scriptstyle \pm 4.95}$	$52.35{\scriptstyle\pm11.02}$	$48.61{\scriptstyle \pm 2.34}$	$55.10{\scriptstyle \pm 10.57}$
LRI-BERNOULLI	$74.38{\scriptstyle \pm 4.33}$	$81.42{\scriptstyle \pm 1.52}$	$78.23{\scriptstyle \pm 1.11}$	$65.64{\scriptstyle \pm 2.44}$	$89.22{\scriptstyle \pm 3.58}$	$68.76{\scriptstyle\pm7.35}$	$54.87 {\pm} 1.89$	$72.12{\scriptstyle\pm2.60}$
GMT-LIN	77.45 ± 1.69	81.81 ± 1.57	79.17 ± 0.82	68.94 ± 1.08	96.17 ± 1.44	86.33 ± 6.16	$59.70{\scriptstyle\pm1.10}$	$70.62{\pm}3.59$
GMT-SAM	$75.61 {\pm} 1.86$	$81.96{\scriptstyle \pm 1.35}$	$78.28{\scriptstyle\pm1.34}$	$65.69{\scriptstyle \pm 2.61}$	$93.93{\scriptstyle \pm 3.59}$	$83.20{\scriptstyle \pm 4.74}$	60.03 ± 1.02	$72.56 {\scriptstyle \pm 2.27}$

Table 4. Prediction performance (AUC) on geometric graphs.

	ActsTrack	Tau3Mu	SynMol	PLBIND
ERM	$97.40{\scriptstyle \pm 0.32}$	$82.75{\scriptstyle \pm 0.16}$	$99.30{\scriptstyle \pm 0.20}$	$85.31{\scriptstyle \pm 2.21}$
LRI-BERNOULLI	$94.00{\scriptstyle \pm 0.78}$	$86.36{\scriptstyle \pm 0.06}$	$99.30{\scriptstyle \pm 0.15}$	$85.80{\scriptstyle \pm 0.70}$
GMT-LIN	$93.92{\scriptstyle \pm 0.98}$	$82.60{\scriptstyle \pm 0.17}$	$99.26{\scriptstyle \pm 0.27}$	$86.29{\scriptstyle \pm 0.80}$
GMT-SAM	$98.55{\scriptstyle \pm 0.11}$	$86.42 \scriptstyle \pm 0.08$	$99.89 {\scriptstyle \pm 0.03}$	87.19 ± 1.86

Table 3. Interpretation performance on geometric graphs. Results with the mean-1*std larger than the best baselines are shadowed.

Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are **iid**., i.e., independently sampled from an identical distribution, while data is often **OOD**, i.e., out-of-distribution, in real-world applications.

Causal Representation Learning on Graphs: [NeurIPS'22 Spotlight, NeurIPS'23a]

Useful Properties of the Causal Representations: OOD Generalizability [NeurIPS'22, 23a], Adversarial Robustness [ICLR'22], Interpretability [ICML'24a]

Optimization & Feature Learning schemes for Causal Representation Learning: [ICLR'23a, NeurIPS'23b]

The Optimization Dilemma in OOD Generalization Traditional optimization strategy is **not suitable** for OOD generalization.

 λ is **hard to tune** Regularization via some **relaxed** OOD objective

The Optimization Dilemma in OOD Generalization

We demonstrate the issue using a widely studied and adopted frameworks: Invariant Risk Minimization.

Linearized IRM with $w \in \mathbb{R}^{6}$

IRM

Regularization via some *relaxed* OOD objective

The Optimization Dilemma in OOD Generalization

The practical variants of IRM can have very different behaviors from the original IRM.

Illustration of IRMv1 failures

(Arjovsky et al., 2019; Kamath et al., 2021)

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

The optimization of IRM essentially handles the *trade-off* between $\min_{f} L_{\text{ERM}} + \lambda \cdot \hat{L}_{\text{OOD}}$

Capturing the statistical correlations Enforcing the invariance of learned correlations

 $\min\{L_{\text{ERM}}, \hat{L}_{\text{OOD}}\}^T$

Oh, it's a Multi-Objective Optimization (MOO)!

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

 $\min_{f=w\cdot\varphi} \{L_1, L_2\}^T$

Simulated Pareto front

Assume we have the Multi-Objective Optimization (MOO) problem with 2 objectives:

- A solution f (with $\{L_1, L_2\}^T$) dominates \bar{f} (with $\{\bar{L}_1, \bar{L}_2\}^T$) if both $L_1 \leq \bar{L}_1$ and $L_2 \leq \bar{L}_2$;
- Pareto optimal solutions are the set of solutions dominated by none;
- Their images form the **Pareto front**;

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

Assume we have 2 training environments, a natural MOO formulation of IRMv1 is:

Simulated Pareto front

 $\min_{f=w\cdot\varphi} \{L_1, L_2, L_{\text{IRM}}\}^T$

Illustration of IRMv1 failures

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

A PAIRed journey into the adventure of extrapolation: $\min_{f=w \cdot \varphi} \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REX}}\}^T$

Theoretical results (Informal): IRMX solves the IRMv1 failures under any environment settings in (Kamath et al., 2021).

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

OOD solution \mathcal{L}_{OOD} **Descent Phase Balance Phase** Init. point IRMX raises more challenges in the optimization: $\min_{f=w \cdot \varphi} \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REx}}\}^T$

- The Pareto front becomes more complicated: The optimizer needs to be able to reach any Pareto optimal solutions!
- There can be **multiple** Pareto optimal solutions:
 - ✓ A preference of each objective is required! PAIR-o as the OOD optimizer;

Theoretical results (Informal):

Under mild assumptions, let f_{OOD} be the desired OOD solution w.r.t. an underlying preference \mathbf{p}_{OOD} , PAIR-o converges and approximates to f_{OOD} for any approximated $\hat{\mathbf{p}}_{OOD}$.

 \mathcal{L}_{ERM} Exact Pareto optimal search

Causal Invariance Recovery Tests

We first test PAIR in a simple regression setting:

Regression target:

 $Y = sin(X_1) + 1$, only depends on the x-axis;

Training envs:

Two elliptical regions (Gaussian distributions) marked in red;

Invariance:

The **overlapped** x-axis region, i.e., [-2,2].

Ground Truth

VREx

PAIR

valid_loss: 0.8783712983131409

Real-world Experiments

Table 2: OOD generalization pe

	CAMELYON17	CIVILCOMMENTS	FMoW	IWILDCAM	POVERTYMAP	RxRx1	
	Avg. acc. (%)	Worst acc. (%)	Worst acc. (%)	Macro F1	Worst Pearson r	Avg. acc. (%)	AVG. RANK $(\downarrow)'$
ERM	70.3 (±6.4)	56.0 (±3.6)	32.3 (±1.25)	30.8 (±1.3)	0.45 (±0.06)	29.9 (±0.4)	4.50
CORAL	59.5 (±7.7)	65.6 (±1.3)	31.7 (±1.24)	32.7 (±0.2)	0.44 (±0.07)	28.4 (±0.3)	5.50
GroupDRO	$68.4(\pm 7.3)$	$70.0(\pm 2.0)$	30.8 (±0.81)	$23.8 (\pm 2.0)$	$0.39(\pm 0.06)$	$23.0(\pm 0.3)$	6.83
IRMv1	$64.2(\pm 8.1)$	$66.3(\pm 2.1)$	30.0 (±1.37)	15.1 (±4.9)	$0.43~(\pm 0.07)$	$8.2(\pm 0.8)$	7.67
V-REx	71.5 (±8.3)	$64.9(\pm 1.2)$	$27.2~(\pm 0.78)$	$27.6~(\pm 0.7)$	0.40 (±0.06)	$7.5(\pm 0.8)$	7.00
Fish	$74.3(\pm 7.7)$	$73.9(\pm 0.2)$	34.6 (±0.51)	$24.8(\pm 0.7)$	$0.43~(\pm 0.05)$	$10.1 (\pm 1.5)$	4.33
LISA	74.7 (±6.1)	70.8 (±1.0)	$33.5~(\pm 0.70)$	$24.0~(\pm 0.5)$	0.48 (±0.07)	$31.9(\pm 0.8)$	2.67
IRMX	67.0 (±6.6)	$74.3(\pm 0.8)$	33.7 (±0.78)	26.6 (±0.9)	0.45 (±0.04)	28.7 (±0.2)	4.00
PAIR-0	74.0 (±7.0)	75.2 (±0.7)	35.5 (±1.13)	$27.9~(\pm 0.7)$	$0.47~(\pm 0.06)$	28.8 (±0.1)	2.17

[†]Averaged rank is reported because of the dataset heterogeneity. A lower rank is better.

PAIR re-empowers IRMv1 and achieves new state-of-the-arts across 6 challenging realistic datasets.

erformances on	WILDS	benchmark.
----------------	-------	------------

Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are **iid**., i.e., independently sampled from an identical distribution, while data is often **OOD**, i.e., out-of-distribution, in real-world applications.

Causal Representation Learning on Graphs: [NeurIPS'22 Spotlight, NeurIPS'23a]

Useful Properties of the Causal Representations: OOD Generalizability [NeurIPS'22, 23a], Adversarial Robustness [ICLR'22], Interpretability [ICML'24a]

Optimization & Feature Learning schemes for Causal Representation Learning: [ICLR'23a, NeurIPS'23b]

A Debate on ERM Feature Learning

ERM learns predictive but spurious features, that are bad for out-of-distribution (OOD) generalization.

Cows: 90% green background Camels: 90% yellow background

camel

COW

(Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

A Debate on ERM Feature Learning

ERM already learns invariant features, that are useful for OOD generalization.

(Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

A Debate on ERM Feature Learning

OOD generalization performance heavily rely on proper ERM pre-training.

OOD performance on ColoredMNIST

(Zhang et al., 2022; Chen et al., 2022)

Data Model for OOD Generalization

- Two classes $y = \{-1, +1\}$
- The input $\mathbf{x} \in \mathbb{R}^{2d}$ is composed of

A feature patch $\mathbf{x}_1 \in \mathbb{R}^d$

A noise patch $\mathbf{x}_2 \in \mathbb{R}^d$

(Allen-Zhu & Li 2019)

Data Model for OOD Generalization

- Two classes $y = \{-1, +1\}$
- The feature patch $\mathbf{x}_1 \in \mathbb{R}^d$ is generated via:

Invariant signal

Label: 0

Label: 1

Label: 1

10 20

Label: 1

10 20

0

0

The input $\mathbf{x} \in \mathbb{R}^{2d}$ is composed of a feature patch $\mathbf{x}_1 \in \mathbb{R}^d$ and a noise patch $\mathbf{x}_2 \in \mathbb{R}^d$

10

0 10 20

Label: 0

(Allen-Zhu & Li 2019)

ERM and IRM Feature Learning

Theoretical Results (Informal):

- ERM learns *both* invariant and spurious features.
- correlation strength with the labels.

The invariant and spurious feature learning speed depends on the

ERM and IRM Feature Learning

Theoretical Results (Informal):

- invariant features

OOD training with IRMv1

IRMv1 cannot learn any features even at the beginning of training; IRMv1 highly *relies on* ERM pre-training feature quality to extract

Feature Learning with ERM

OOD training can only leverage *limited* invariant features for prediction.

Learned Features

Underlying Features

FeAT: Feature Augmented Training

Leveraging the feature learning information can partition the dataset into retention sets \mathcal{D}^r and augmentation sets \mathcal{D}^{a} .

Underlying Features

FeAT: Feature Augmented Training

Leveraging the feature learning information can augmentation sets \mathcal{D}^a .

Leveraging the feature learning information can partition the dataset into retention sets \mathcal{D}^r and

FeAT: Feature Augmented Training

Performing **feature augmentation** and **retention** several rounds, we can obtain richer feature representations that facilitate better OOD generalization.

Learned Features

Invariant Features

Underlying Features

Experimental Results

FeAT boosts OOD performance of various objectives across various ColoredMNIST variant datasets.

Table 1: OOD performance on COLOREDMNIST datasets initialized with different representations.

COLORED	MNIST-025	1		COLORED	MNIST-01	
ERM	BONSAI	FEAT	ERM-nf	ERM	BONSAI	F
2.40 (±0.32)	11.21 (±0.49)	17.27 (±2.55)	73.06 (±0.71)	73.75 (±0.49)	70.95 (±0.93)	76.0
0.81 (±4.46)	70.28 (±0.72)	$70.57 (\pm 0.68)$	76.89 (±3.25)	$73.84(\pm 0.56)$	76.71 (±4.10)	82.3
5.96 (±1.29)	$70.31(\pm 0.66)$	70.82 (±0.59)	$83.52(\pm 2.52)$	81.20 (±3.27)	82.61 (±1.76)	84.7
$4.05(\pm 0.88)$	70.46 (±0.42)	70.78 (±0.61)	81.61 (±1.98)	$75.97(\pm 0.88)$	80.28 (±1.62)	84.3
0.81 (±4.46)	70.28 (±0.72)	$70.57(\pm 0.68)$	75.81 (±0.63)	$73.84(\pm 0.56)$	76.71 (±4.10)	82.3
$5.78(\pm 0.00)$	65.57 (±3.02)	65.78 (±2.68)	75.66 (±10.6)	74.73 (±0.36)	$72.73(\pm 1.18)$	75.1
$2.43(\pm 3.06)$	70.17 (±0.89)	67.11 (±3.40)	74.20 (±2.45)	$73.74(\pm 0.48)$	74.72 (±3.60)	83.4
$7.74(\pm 0.90)$	68.75 (±1.10)	70.56 (±0.97)	77.29 (±1.61)	82.23 (±1.35)	84.19 (±0.66)	84 .2
71.97 (±0.34)				86.55	(±0.27)	

Stronger spurious signal

Stronger invariant signal

Real-World Experimental Results

FeAT boosts OOD performance of various objectives across 6 challenging real-world OOD datasets. Table 2: OOD generalization performances on WILDS benchmark.

ΙΝΙΤ ΜΕΤΗΟΡ		CAMELYON17	CIVILCOMMENTS	FMoW	IWILDCAM	Amazon	RxRx1
INII.		Avg. acc. (%)	Worst acc. (%)	Worst acc. (%)	Macro F1	10-th per. acc. (%)	Avg. acc. (%)
ERM	DFR^\dagger	95.14 (±1.96)	$77.34~(\pm 0.50)$	41.96 (±1.90)	23.15 (±0.24)	48.00 (±0.00)	-
ERM	\mathbf{DFR} -s [†]	-	82.24 (±0.13)	$56.17~(\pm 0.62)$	$52.44~(\pm 0.34)$	-	-
Bonsai	\mathbf{DFR}^{\dagger}	95.17 (±0.18)	77.07 (±0.85)	43.26 (±0.82)	21.36 (±0.41)	$46.67~(\pm 0.00)$	-
Bonsai	\mathbf{DFR} -s [†]	-	81.26 (±1.86)	58.58 (±1.17)	50.85 (±0.18)	-	-
FeAT	DFR^\dagger	95.28 (±0.19)	77.34 (±0.59)	43.54 (±1.26)	23.54 (±0.52)	49.33 (±0.00)	-
FeAT	DFR-s [†]	-	79.56 (±0.38)	57.69 (±0.78)	52.31 (±0.38)	-	-
ERM	ERM	74.30 (±5.96)	55.53 (±1.78)	33.58 (±1.02)	28.22 (±0.78)	51.11 (±0.63)	30.21 (±0.09)
ERM	GroupDRO	$76.09~(\pm 6.46)$	$69.50~(\pm 0.15)$	$33.03~(\pm 0.52)$	$28.51~(\pm 0.58)$	$52.00~(\pm 0.00)$	29.99 (±0.13)
ERM	IRMv1	$75.68~(\pm 7.41)$	$68.84~(\pm 0.95)$	$33.45~(\pm 1.07)$	$28.76~(\pm 0.45)$	$52.00~(\pm 0.00)$	30.10 (±0.05)
ERM	V-REx	71.60 (±7.88)	$69.03~(\pm 1.08)$	$33.06~(\pm 0.46)$	$28.82~(\pm 0.47)$	$52.44~(\pm 0.63)$	$29.88~(\pm 0.35)$
ERM	IRMX	73.49 (±9.33)	68.91 (±1.19)	$33.13(\pm 0.86)$	$28.82 (\pm 0.47)$	52.00 (±0.00)	$30.10(\pm 0.05)$
Bonsai	ERM	73.98 (±5.30)	63.34 (±3.49)	$31.91~(\pm 0.51)$	$28.27~(\pm 1.05)$	$48.58~(\pm 0.56)$	$24.22~(\pm 0.44)$
Bonsai	GroupDRO	$72.82~(\pm 5.37)$	70.23 (±1.33)	33.12 (±1.20)	27.16 (±1.18)	$42.67~(\pm 1.09)$	22.95 (±0.46)
Bonsai	IRMv1	$73.59(\pm 6.16)$	$68.39~(\pm 2.01)$	32.51 (±1.23)	27.60 (±1.57)	47.11 (±0.63)	$23.35(\pm 0.43)$
Bonsai	V-REx	$76.39(\pm 5.32)$	68.67 (±1.29)	33.17 (±1.26)	$25.81~(\pm 0.42)$	$48.00 \ (\pm 0.00)$	$23.34~(\pm 0.42)$
Bonsai	IRMX	$64.77~(\pm 10.1)$	69.56 (±0.95)	$32.63~(\pm 0.75)$	$27.62~(\pm 0.66)$	$46.67~(\pm 0.00)$	$23.34(\pm 0.40)$
FeAT	ERM	77.80 (±2.48)	68.11 (±2.27)	$33.13~(\pm 0.78)$	$28.47~(\pm 0.67)$	52.89 (±0.63)	30.66 (±0.42)
FeAT	GroupDRO	80.41 (±3.30)	$71.29(\pm 0.46)$	$33.55~(\pm 1.67)$	$28.38(\pm 1.32)$	$52.58~(\pm 0.56)$	29.99 (±0.11)
FeAT	IRMv1	77.97 (±3.09)	$70.33~(\pm 1.14)$	34.04 (±0.70)	29.66 (±1.52)	52.89 (±0.63)	29.99 (±0.19)
FeAT	V-REx	$75.12~(\pm 6.55)$	70.97 (±1.06)	34.00 (±0.71)	29.48 (±1.94)	52.89 (±0.63)	30.57 (±0.53)
FeAT	IRMX	76.91 (±6.76)	$71.18~(\pm 1.10)$	$33.99~(\pm 0.73)$	29.04 (±2.96)	${f 52.89}(\pm 0.63)$	29.92 (±0.16)

[†]DFR/DFR-s use an additional OOD dataset to evaluate invariant and spurious feature learning, respectively.

FeAT Learns Richer Meaningful Features

ERM

Bonsai

FeAT

Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are **iid**., i.e., independently sampled from an identical distribution, while data is often **OOD**, i.e., out-of-distribution, in real-world applications.

Causal Representation Learning on Graphs: [NeurIPS'22 Spotlight, NeurIPS'23a]

Useful Properties of the Causal Representations: OOD Generalizability [NeurIPS'22, 23a], Adversarial Robustness [ICLR'22], Interpretability [ICML'24a]

Optimization & Feature Learning schemes for Causal Representation Learning: [ICLR'23a, NeurIPS'23b]

From Traditional ML to Modern ML with Large Pretrained Models

The undergoing revolution to the traditional ML is the emerge of the large pretrained models.

AlphaFold

Stable Diffusion

ChatGPT

The Large Pretrained Models

Web-scale training data: 400 million images collected from the web (dataset internal to OpenAI). Multimodal contrastive learning: language supervision.

Large pretrained models such as CLIP/ChatGPT presents a paradigm shift to modern ML systems.

(Radford et al., 2021; OpenAl blog)

Is OOD Generalization Solved by Large Pretrained Models?

Large Pretrained Model can not solve the spurious correlation issue.

Ice Bear in Snow (common) CLIP ACCU: 80.25

Ice Bear in Grass (counter) CLIP ACCU: 9.17

Chen*, Wang*, Lin*, et al., "CLIPs Always Generalize Better than ImageNet Models?", arXiv 2403.11497

Is OOD Generalization Solved by Large Pretrained Models?

We collect 55 classes of animals with 7800 common examples and 6500 counter examples.

ImageNet label		Co	mmon		(Counter		Decline	
		background	# data	accuracy	background	# data	accuracy		-
	10 brambling, Fringilla montifringilla	green	117	78.63	white or blue	111	49.55	29.08	
	100 black swan, Cygnus atratus	above water	204	93.63	ground	106	68.87	24.76	
	102 echidna, spiny anteater, anteater	grass	125	20.00	tree	221	4.07	15.93	
	128 black stork, Ciconia nigra	grass	81	77.78	sky	149	14.77	63.01	
	130 flamingo	above water	197		276 hyon	hypona			grass 346 02.20 road 100 82.00 10.20
	133 bittern	grass	205		077 red for A	i, nyaéna			grass 340 92.20 10ad 100 82.00 10.20
	144 pelican	above water	232		211 red lox, V	vuipes vui	pes		grass 143 69.23 road 105 59.05 10.18
	150 sea lion	sand	58	279 Ar	ctic fox, white	fox, Alop	ex lagopu	s	snow 123 67.48 grass 238 26.05 41.43
	16 bulbul	white or blue	122	290 jagua	r, panther, Pa	nthera on	ca, Felis o	nca	above water 65 33.85 tree 226 13.72 20.13
	20 water ouzel, dipper	above water	260	291	lion, king of be	easts, Pan	thera leo		grass 263 74.90 tree 222 45.95 28.96
	23 Vulture	sky	147	87.76	tree	98	41.84	45.92	
275 Africa	n hunting dog, hyena dog, Cape hunting dog, Lycaon pictus	grass	210	85.24	tree	72	63.89	21.35	
	276 hyena, hyaena	grass	346	92.20	road	100	82.00	10.20	
	277 red fox, Vulpes vulpes	grass	143	69.23	road	105	59.05	10.18	
	279 Arctic fox, white fox, Alopex lagopus	snow	123	67.48	grass	238	26.05	41.43	
	290 jaguar, panther, Panthera onca, Felis onca	above water	65	33.85	tree	226	13.72	20.13	
	291 lion, king of beasts, Panthera leo	grass	263	74.90	tree	222	45.95	28.96	• Yes ! Concept shifts examples
	293 cheetah, chetah, Acinonyx jubatus	grass	212	80.66	tree	106	55.66	25.00	
	30 bullfrog, Rana catesbeiana	above water	274	73.36	not in water	158	48.10	25.26	aviatin LAION CLID laading
	33 loggerhead, loggerhead turtle, Caretta caretta	underwater	220	73.64	not in water	91	18.68	54.96	EXISTIN LAION CLIP. leading
37 box turtle, box tortoise		grass	65	73.85	earth	200	49.00	24.85	,
39 common iguana, iguana, Iguana iguana		earth	50	54.00	shrub	120	30.83	23.17	to more then 200/ drep in
41 whiptail, whiptail lizard		earth	249	60.64	hand	100	4.00	56.64	
42 agama		rock	338	74.26	tree	142	28.87	45.39	
49 /	African crocodile, Nile crocodile, Crocodylus niloticus	earth	91	72.53	grass	84	35.71	36.81	avorado accuracy
	54 hognose snake, puff adder, sand viper	earth	203	22.17	grass	123	2.44	19.73	average accuracy.
	56 king snake, kingsnake	earth	228	30.26	grass	98	22.45	7.81	
	57 garter snake, grass snake	grass	78	67.95	earth	249	19.68	48.27	
	58 water snake	water	151	68.87	ground	163	1.23	67.65	
	70 harvestman, daddy longlegs, Phalangium opilio	shrub	501	48.50	rock	125	20.00	28.50	
	71 scorpion	indoor	79	29.11	outdoor	264	4.17	24.95	
	76 tarantula	sand	231	81.82	grass	158	43.67	38.15	
	79 centipede	white background	61		9 ostrich, Stri	uthio cam	elus	_	ground 206 79.61 water 113 57.52 22.09
80 black grouse		grass	52		Balance	ed error			7866 66.57 6595 32.68 33.89
81 ptarmigan		snow	57						
	83 prairie chicken, prairie grouse, prairie fowl	grass	259						
89 sulp	hur-crested cockatoo, Kakatoe galerita, Cacatua galerita	tree	163	88.34	grass	100	63.00	25.34	
	9 ostrich, Struthio camelus	ground	206	79.61	water	113	57.52	22.09	
	Balanced error		7866	66.57		6595	32.68		
		π			-				

Chen*, Wang*, Lin*, et al., "CLIPs Always Generalize Better than ImageNet Models?", arXiv 2403.11497

Is OOD Generalization Solved by Large Pretrained Models?

Symmetry is critical for reasoning tasks with LPMs, yet not sufficiently well learned.

Figure 1. Illustration of linear regression ICL with auto-regressive Transformer (left) and DeepSet (right). Given kinput demonstrations $(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$, and the query input x_k , Transformer adheres to the paradigm of the auto-regressive language model to infer the labels in an auto-regressive manner. In contrast, DeepSet jointly models the k sequential demonstrations as a set, and produces the output of the query based on the set-aggregated representations.

102

Chen et al., "Positional Information Matters for Invariant In-Context Learning: A Case Study of Simple Function Classes", arXiv 2311.18194

(b) OOD ICL with $\mu = 2$.

Combining the Best of Two Worlds

Large pretrained models provides new opportunities learning causality for modern ML :

Large Pretrained Model for Causal Representation Learning

Large pretrained models can extracts useful high-level hidden variables for causal discovery using the rich world knowledge:

Chen*, Liu*, et al., "Discovery of the Hidden World with Large Language Models", arXiv 2402.03941

The Essential Role of Causality in Alignment

Aligning the rich knowledge to another modality or preferences requires proper causal disentanglement of the important concepts:

Chen et al., "Improving Graph-Language Alignment with Hierarchical Graph Tokenization", arXiv TBD

New Foundations of Modern Machine Learning

Combining large pretrained models and causality opens up a new frontier for modern machine learning.

Large Pre-trained Models

Acknowledgements The full acknowledgement list is given in the thesis.

