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Machine Learning Systems are Everywhere

In our modern daily life, machine learning (ML) systems are everywhere.
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From Traditional ML to Modern ML

There is a paradigm shift challening the fundamental assumption in ML

Traditional Machine Learning
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The Out-of-Distribution Generalization Failure

Distribution shifts/changes are everywhere. Existing ML models deployed in the wild can fail short in
generalizing to new domains/environments, or across subpopulations.

Waymo Open Challenge

Training Environment Various Test Environments

A ( Beery et al., 2018, Arjovsky et al., 2019; DeGrave et al. 2021; Koh et al., 2027)



The Out-of-Distribution Generalization Failure

Distribution shifts/changes are everywhere. Existing ML models deployed in the wild can fail short in
generalizing to new domains/environments, or across subpopulations.
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How to Handle Changes?

What is unchanged across changes?

Train Environment Test Environment




How to Handle Changes?

Causal Invariance Principle: The causal mechanism generating the target variable from its direct
parents is independent from the changes.

Train Environment Test Environment

P(Label | Animal shapes etc.) is invariant!



How to Handle Changes?

Leveraging the principle of causal invariance, we can seek for

environment e = 1:
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(Peters et al., 2015, Arjovsky et al., 2019, Bottou et al., 20217,)



How to Handle Changes?

Leveraging the principle of causal invariance, we can seek for

environment e = 1: environment e = 2: environment e = 3:
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Invariant predictor f = w o ¢ implemented with invariant risk minimization (IRM):
MiN f— o Zee&r L.(wo ),
S.t. w € argming L.(w o ¢), Ve € &,

that is simultaneously optimal across different environments/domains.

X (Peters et al., 2015, Arjovsky et al., 2019, Bottou et al., 2021,)



Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications.

Obiect Causal Representation Learning on Graphs:
bjectives [NeurlPS’22 Spotlight, NeurlPS’23a]

Useful Properties of the Causal Representations:
OOD Generalizability [NeurlPS’22, 234a],
Adversarial Robustness [ICLR22],

Interpretability [[CML’244a]

Implications

Realizat Optimization & Feature Learning schemes for Causal
ealizations Representation Learning: [ICLR’23a, NeurlPS’23b]
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Causal Representation Learning on Graphs

We seek to derive general causal representation learning objectives from a general view, i.e., graphs.

Model & Inference over Protein Interaction
the physical world Predictions

Besides, GNNs can also
process structures like
Image and text...

Knowledge Graph
Completion & Analysis

Recommender Systems
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Out-of-Distribution Generalization on Graphs

Proposed therapeutic treatment for COVID-19 ['“‘““fe e
targeting SARS-CoV-2 viral entry mechanism WA AR
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Human target cell




Out-of-Distribution Generalization on Graphs
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Out-of-Distribution Generalization on Graphs
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Out-of-Distribution Generalization on Graphs

OQOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

fann( w b, {O0O}) = “House”

z; Train (mixture of domains) [est (unseen domains)
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Structure-level shifts Attribute-level shifts Mixture of structure-level and attribute-level shifts

16 ( Knyazev et al. 2019; Hu et al., 2020, Koh et al., 2021, Gui et al., 2022, Chen et al., 2022)



Out-of-Distribution Generalization on Graphs

OQOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

fGNN( { m b, {OO }) = “House”

Task Training Data Testing Data S pec fical |y

w g Ciyela® « Graphs are highly non-linear;
& “House”

QO “Cycle”
Cg “Cycle”
& “House”

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)
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Out-of-Distribution Generalization on Graphs

OQOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Task

& “House”

Cg} “Cycle” :
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Specifically,

Gra
The

ohs are highly non-linear;

‘e could be attribute-level shifts;



Out-of-Distribution Generalization on Graphs

OQOD generalization on graphs is fundamentally more challenging than that on Euclidean data:
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Out-of-Distribution Generalization on Graphs

OQOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Task

& “House”
C@ “Cycle”
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Out-of-Distribution Generalization on Graphs

OQOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

fGNN( { m I, {OO }) = “House”

No environment partitions

Task Tralnlng Data { Testing Data SpeC|f Ca”y, | |
« Graphs are highly non-linear;
“House” () * There could be attribute-level shitts;
& S » There could be structure-level shifts;

“House,, w BOth_ shifts can e _m_lxed; |
ch “Cycle”  Environment partitions are expensive

“Cycle” (1)

(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)
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Out-of-Distribution Generalization on Graphs

22

OQOD generalization on graphs
are much more challenging!

O “House” (1) o Graphs are highly non-linear

3 3 . o Attribute-level shifts
“House” /..
8 f “’ e Structure-level shifts

@ “Cycle”  Mixed shifts in different modes

Training Data Testing Data

&/

 Expensive environment labels
(Ying et al., 2019; Luo et al., 2020; Wu et al., 2022;)

—e— Struc-ERM o —e— Struc-ERM 70 —e— Struc-GCN
90 f = —e— Mixed-ERM . —e— Mixed-ERM 65 1 —+— Mixed-GCN
: : —+— Struc-IRM +— Struc-IRM —4&— Struc-kGNN
80 - /\ —— Mixed-IRM 55 | —— Mixed-IRM | - —+— Mixed-kGNN
> e o, >
Q |© ]
© © 50
5 70 =
o O 451
< 60 <
40
50 - 35
0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9
Data Biases Data Biases Data Biases
Structure and attribute shifts Mixed with graph size shifts Structure and attribute shifts
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How can we model the complicated graph distribution shifts?
And train a GNN to capture the desired invariance?



Structural Causal Models for Graph Generation

We formulate the most comprehensive causal models for distribution shifts on graphs.

Graph Generation Process:

Structural Causal Models

24



Structural Causal Models for Graph Generation

We formulate the most comprehensive causal models for distribution shifts on graphs.

Graph Generation Process:
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CIGA: Causality Inspired Invariant Graph LeArning

We propose a new framework, CIGA, that approaches the classification in two steps:

Step 1: Invariant subgraph identification

Featurizer GNN g : & — ?C 1 % j
(b) FIfE SCM (c) PIF SCM

Structural Causal Models

Step 2: Label prediction
Classifier GNNf. : &, = ¥

Overall objective

20



CIGA: Causality Inspired Invariant Graph LeArning

We propose a new framework, CIGA, that approaches the classification in two steps:

: . *I‘.-. .‘..’ i
When | G.| = s. is known and fixed, . AL 2l oo
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i (a) G-Gét8ScM (b) FITF'SCM (c) BIFSCM

Structural Causal Models

CIGAv1: using Y as a proxy of C

: max I(@C;Y), s.t. G, € arg max I(éc;éCD’),
g = Ge=g(G),|Gc|<se :

E I(Gc; GC|Y) ~ E{écl,éc}wlP’g(GW:Y) log
. {G 1L ~Py(GY#Y)
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CIGA: Causality Inspired Invariant Graph LeArning

We propose a new framework, CIGA, that approaches the classification in two steps:

CIGAv1: when |G| = s.is known and fixed =
;--....--....---....--.....--....--.....--....--.....--....--..: "E:’l' ‘

‘ max I(G;Y), st.Ge € argmax  I(Ge;G.|Y), : AN ,‘

E fesg §c=g(G),|§c|SSc E E ’Q.. : ‘:
P P T T T RSP TR - ' (a) Q-Gé'ﬂ.'§CM (b) FIIF §CM

Structural Causal Models

maxs, o, (G YY)+ I(Gs;Y), st G, € arg maxéczg(a)l(éc; G.|Y),

I(Gs;Y) <I(G.;Y), G, = G — g(@),
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CIGA: Causality Inspired Invariant Graph LeArning

CIGA achieves the state-of-the-art OOD generalization performance under 30+ datasets and graph
distribution shifts, including a OOD drug property prediction task.

Theoretical results (Informal):
Given the previous SCMs, each solution to CIGAv1 or CIGAVZ elicits a GNN that is generalizable
against various distribution shifts, with some mild assumptions on training environments, and the
expressivity of GNNs encoders.

Table 1: OOD generalization performance on structure and mixed shifts for synthetic graphs.

SPMoOTIE-STRUCT SPMOTIE-MIXED"

29

BIAS=0.33 BIAS=0.60 BIAS=0.90 BIAS=0.33 BIAS=0.60 BIAS=0.90 AVG
ERM 59.49 (3.50) 55.48 (4.84) 49.64 (4.63) 58.18 (4.30) 49.29 (8.17) 41.36 (3.29) 52.24
ASAP 64.87 (13.8) 64.85 (10.6) 57.29 (14.5) 66.88 (15.0) 59.78 (6.78) 50.45 (4.90) 60.69
DIR 58.73 (11.9) 48.72 (14.8) 41.90 (9.39) 67.28 (4.06) 51.66 (14.1) 38.58 (5.88) 51.14
IRM 57.15 (3.98) 61.74 (1.32) 45.68 (4.88) 58.20 (1.97) 49.29 (3.67) 40.73 (1.93) 52.13
V-REX 54.64 (3.05) 53.60 (3.74) 48.86 (9.69) 57.82 (5.93) 48.25 (2.79) 43.27 (1.32) 51.07
EIIL 56.48 (2.56) 60.07 (4.47) 55.79 (6.54) 33.91 (3.15) 48.41 (5.53) 41.75 (4.97) 52.73
IB-IRM 58.30 (6.37) 54.37 (7.35) 45.14 (4.07) 57.70 (2.11) 50.83 (1.51) 40.27 (3.68) 51.10
CNC 70.44 (2.55) 66.79 (9.42) 50.25(10.7) 65.75 (4.35) 59.274(5.29) 41.58 (1.90) 59.01
CIGAV1 71.07 (3.60) 63.23 (9.61) 51.78 (7.29) 74.35 (1.85) 64.54 (8.19) 49.01 (9.92) 62.33
CIGAV2 77.33 (9.13) 69.29 (3.06) 63.41 (7.38) 72.42 (4.80) 70.83 (7.54) 54.25 (5.38) 67.92
ORACLE (IID) 88.70 (0.17) 88.73 (0.25)

"THigher accuracy and lower variance indicate better OOD generalization ability.

CIGA outperforms previous methods under structure and mixed shifts by a significant margin up to 10%.



CIGA: Causality Inspired Invariant Graph LeArning

CIGA achieves the state-of-the-art OOD generalization performance under 30+ datasets and graph
distribution shifts, including a OOD drug property prediction task.

Theoretical results (Informal):
Given the previous SCMs, each solution to CIGAv1 or CIGAVZ elicits a GNN that is generalizable
against various distribution shifts, with some mild assumptions on training environments, and the
expressivity of GNNs encoders.

Table 3: OOD generalization performance on graph size shifts for

Table 2: OOD generalization performance on complex distribution shifts for real-world graphs. real-world graphs in terms of Matthews correlation coefficient.

30

DATASETS DRUG-ASSAY  DRUG-SCA DRUG-SIZE ~ CMNIST-sP  GRAPH-SSTS5 TWITTER AVG (RANK)T DREASETS Nel Helly EROREU ik ik
ERM 0.15(0.05)  0.16(0.02)  0.22(0.09) 0.27 (0.09)  0.20
ERM 71.79 (0.27) 68.85(0.62) 66.70 (1.08) 13.96 (5.48) 43.89 (1.73)  60.81 (2.05) 54.33 (6.00) ASAP 0.16 (0.10)  0.15(0.07)  0.22(0.16) 0.21 (0.08) 0.19
ASAP 70.51(1.93) 66.19(0.94) 64.12 (0.67) 10.23 (0.51) 44.16 (1.36) 60.68 (2.10) 52.65 (8.33) GIB 0.13(0.10) 0.16(0.02)  0.19(0.08) 0.01(0.18) 0.12
GIB 63.01 (1.16) 62.01(1.41) 55.50(1.42) 15.40 (3.91) 38.64 (4.52) 48.08 (2.27) 47.11 (10.0) DIR 0.21(0.06) 0.13(0.05) 0.25(0.14) 0.20(0.10)  0.20
DIR 68.25 (1.40)  63.91(1.36)  60.40 (1.42)  15.50 (8.65)  41.12(1.96)  59.85(2.98)  51.51(9.33) IRM 0.17 (0.02)  0.14(0.01)  0.21(0.09) 0.22(0.08)  0.19
IRM 72.12 (0.49)  68.69 (0.65)  66.54 (0.42) 31.58(9.52)  43.69(1.26) 63.50(1.23)  57.69 (4.50) Lo Sl E OB (o Gk o
V-REX 72.05 (1.25) 68.92 (0.98) 66.33 (0.74) 10.29 (0.46) 43.28 (0.52) 63.21 (1.57) 54.01 (6.17) IB-IRM 0.12(0.04) 0.15(0.06) 0.21(0.06) 0.15(0.13) 0.16
EIIL 72.60(0.47) 68.45(0.53) 66.38(0.66) 30.04 (10.9) 42.98 (1.03) 62.76 (1.72) 37.20 (5.33) CNC 0.16 (0.04) 0.16(0.04) 0.19(0.08) 0.27(0.13) 0.20
IB-IRM 72.50 (0.49) 68.50 (0.40) 66.64 (0.28) 39.86 (10.5) 40.85 (2.08) 61.26 (1.20) 58.27(5.33) WL KERNEL 0.39 (0.00) 0.21 (0.00)  0.00(0.00) 0.00(0.00) 0.15
CNC 72.40 (0.46) 67.24 (0.90) 65.79 (0.80) 12.21 (3.85) 42.78 (1.53) 61.03 (2.49) 53.56.(7.50) GC KERNEL 0.02 (0.00)  0.00(0.00)  0.29 (0.00) 0.00(0.00) 0.08
CIGAV1 72.71 (0.52)  69.04 (0.86)  67.24 (0.88) 19.77 (17.1)  44.71(1.14)  63.66 (0.84)  56.19 (2.50) S b Cintonh Dol wastiss oo
CIGAV2 73.17 (0.39)  69.70 (0.27)  67.78 (0.76) 44.91 (4.31)  45.25(1.27) 64.45(1.99)  60.88 (1.00) o 026 (0.05) 020(0.04) 025(0.12) 0.20(0.05) 0.23
ORACLE (IID)  85.56 (1.44)  84.71 (1.60)  85.83 (1.31)  62.13(0.43)  48.18(1.00)  64.21 (1.77) CIGAV1 0.22(0.07)  0.23(0.09)  0.40 (0.06) 0.29 (0.08)  0.29
: : : : CIGAV2 0.27 (0.07)  0.22(0.05)  0.31(0.12) _ 0.26 (0.08) _ 0.27

T Averaged rank is also reported in the blankets because of dataset heterogeneity. Lower rank is better. ORACLE (IID) _ 0.32(0.05) _ 0.37 (0.06) _ 0.39 (0.09) _ 0.33 (0.05)

CIGA outperforms previous methods under other realistic shifts by a significant margin up to 710%.



Causal Interpretable Patterns for Scientific Practice

CIGA finds interesting critical functional groups/sub-molecules in OOD molecular affinity prediction.

drugood_Ibap _core_ic50 assay: y=1 drugood_|bap _core_ic50 assay: y=1 drugood _Ibap _core ic50 assay: y=1
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(Ji et al., 2022;)
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OOD Generalization Challenges Solved by CIGA

Let us trace back the challenges in OOD generalization on graphs...

Task

“House”

“Cycle”

32

Training Data

0
g%@

Testing Data

g “House” ,.
OO “House” @

(Ying et al., 2019, Luo et al., 2020; Wu et al., 2022;)

OOD generalization on graphs
are much more challenging!

Graphs are highly non-linear @
Attribute-level shifts W
Structure-level shifts ©
Mixed shifts in different modes «
Expensive environment labels ¢




The “Free Lunch Dilemma” in OOD Generalization on Graphs

Let us considering the data generative model with Partial Informative Invariant Features:

Spurious correlation Invariant correlation

33 (Yu etal, 2027 Miao et al., 2022;)



The “Free Lunch Dilemma” in OOD Generalization on Graphs

One line of works aim to generate new environments based on the existing extracted subgraphs:

Environment #1: Class “House”
Environment #3: Class “House”

Y i ; xtractor % Generator
Environment #2: Class “House”

m m Extracted “Invariant” Subgraph

34 ( Wu et al., 2022ab, Liu et al., 2022)



The “Free Lunch Dilemma” in OOD Generalization on Graphs

One line of works aim to generate new environments based on the existing extracted subgraphs:

Environment #?: Class "House” _ ) )
Environment #3: Class “House
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Extractor Generator

________§
________,

Environment #7?: Class “House”

W Extracted “Invariant” Subgraph TTT T -
More severe biases!

35 ( Wu et al., 2022ab, Liu et al., 2022)



The “Free Lunch Dilemma” in OOD Generalization on Graphs

Another line of works aim to infer environment labels for learning the underlying invariance:

Environment #?: Class “House” Environment #1: Class “House”

Q}@ W O @@ W
Inference

Environment #?: Class “House” Environment #2: Class “House”

o RN e20. oy
P P

36 (Lietal, 2022 Yang et al., 2022)



The “Free Lunch Dilemma” in OOD Generalization on Graphs

Another line of works aim to infer environment labels for learning the underlying invariance:

~ ~
/7
¢/ Environment #?: Class “Grid”

Environment #7?: Class “Grid” Environment #2: Class “Grid”
» What if the underlying

\ ; Invariant subgraph is

S .7 REVERSED?

37 (Lietal, 2022 Yang et al., 2022)

N Environment #1: Class “Grid”

Inference

-




Impossibility Results for OOD Generalization on Graphs

OQOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Environment #7?: Class “House”

WMW

Environment #7?: Class “House”

0
P

38

No Free Lunch in Graph OOD (Informal)
It is fundamentally impossible to identify the
underlying invariant subgraph without further
inductive biases.
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What are the minimal sufficient inductive biases
for invariant graph representation learning?



Failures of Environment Generation

How can we address environments generation failures?

Environment #?: Class "House’ Assumption 1 (Variation Sufficiency)

Hidden layer

IIIII For any spurious subgraph, there exists
W G H a‘] two underlying environments, such
V|| that the spurious correlation varies.
Tl
: ) Extractor

m W Extracted Invariant Subgraph

40 ( Wu et al., 2022ab, Liu et al., 2022)




Failures of Environment Inference

How can we address environment inference failures? _
Assumption 2

- S0 R e A (Variation
/Environment #?: Class “House” ,~ Environment #?: Class "Grid Consistency)

environments,
Environment #?: Class “Grid”

-

either spurious
correlation is
stronger or
weaker.

X
%

Either OR

Environment #7?: Class “House”

%
&

- -l - - S S S S S S S S S S Dy
I I S S S S S S S S S S S S S .
I I S S S S S S S S S S S S S
————————————————l

41 (Lietal, 2022 Yang et al., 2022)



Invariant Graph Learning with Minimal Assumptions

How can we address environment inference failures?

Assumption 1 (Variation Sufficiency) Environment Generation?
For any spurious subgraph, there exists (D |
two underlying environments, such &) More assumptions needed!

that the spurious correlation varies.
Environment Inference?

Spurious correlation stronger:

Assumption 2 (Variati ISt
umption 2 (Variation Consistency) ‘y DisC (Fan et al., 2022)

For all environments, either spurious
correlation is stronger or weaker.

ﬂ Invariant correlation stronger:
CIGA (Chen et al., 2022)

42 (Linetal, 2022 Fan et al.,, 2022 Chen et al., 2022)



GALA: invariant GrAph Learning Assistant
Improving the contrastive invariant subgraph extraction via an Environment Assistant:

Training Data Proxy Predictions

“House” “Cycle”
®- y _®
\ ’ (44 2
l’ - ->
‘ _a2-

o {GP} QXYL [ T SR B 7T

O {Gn} 8

& House ._
{3 Cycle %

I— Graph Labels

-®
“Cycle”
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Proof-of-Concept Experiments

44

Theorem 1 (Informal)

Given the same data generation process, and the aforementioned variation sufficiency
and variation consistency assumptions, when the environment assistant model learns
properly distinguishes the variations of the spurious subgraphs, GALA provably

identifies the invariant subgraph for OOD generalization.

Stronger invariant

correlations

f— —————— ~y, L T ———— - - —
Datasets | {0.8,0.6} {0.8,0.7}" 7{0.8,0.9} {0.7,0.9} Avg. \
ERM | 77.33+0.47 75.65+1.62), 51.37+1.20 42.73+3.82 61.77 \
IRM | 78.32+0.70 75.13:!:0.77|I50.76:I:2.56 41324250 6138
V-Rex 1 77.69+0.38 74.96:|:1.40||49.47:|:3.36 41.65+2.78 60.94 |
[B-IRM | 78.00+0.68 73.93:|:0.79|: 50.93+1.87 42.05+0.79 6123 |
EIIL | 76.98+1.24 74.25j:1.74|_I 51.45+4.92 39.71+264 60.60 |
XGNN | 83.84+0.59 83.05:I:0.20||53.37:|:1.32 38.28+1.71 64.63 I
GREA | 82.86:050 82724050, 50.34=174 39.01+1.21 6372 .
GSAT | 80.54+0.88 78.11+1.23) 48.63+218 36.62+087 6332 |
CAL | 76.98+6.03 62.95+8.58) 51.57+6.33 46.23+393 59.43 |
MoleOOD| 49.93+2.25 49.85+7.31) 38.49+t425 34.81+165 4327 |
GIL | 83514041 82674118 51761432 40.07+261 64.50 |
DisC 1 60.47+17.9 54.29:&15.0||45.06:|:7.82 39.42+8.50 50.81 |
CIGA | 84.03+0.53 83.21:1:0.30||57.87:|:3.38 43.62+320 67.18 |
GALA | 84.271+0.34 83.65j:0.44|_|\76.42:|:3.53 72.50+1.06 79.21 |
Oracle  \ 84.73+0.36 85.42+0.257 84.28+0.15 78.38+0.19 /
I e —— >4 N o e e e e e mm e -

Stronger spurious
correlations



Real-World Experiments

GALA consistently improves the OOD generalization performance under various real-world graph

distribution shifts on a number of realistic graph benchmarks:

45

Datasets EC50-Assay ECS50-Sca EC50-Size  Ki-Assay Ki-Sca Ki-Size CMNIST-sp Graph-SST2 Avg.(Rank)'
ERM 76.42+1.59 64.56+1.25 61.61+1.52 74.61+2.28 69.38+1.65 76.63+1.3¢ 21.56+5.38 81.54+1.13  65.79 (6.50)
IRM 77.14+255 64.32+0.42 62.33+0.86 75.10+3.38 69.32+1.84 76.25+0.73  20.25+3.12 82.52+0.79  65.91 (6.13)
V-Rex 75.57+2.17  64.73+0.53 62.80+0.89 74.16+1.46 T71.40+2.77 76.68+1.35 30.71+11.8 81.11+1.37  67.15 (5.25)
IB-IRM 64.70+2.50 62.62+2.05 58.28+0.99 71.98+3.26 69.55+1.66 T70.71+1.95 23.58+7.96 81.56+0.82  62.87 (10.6)
EIIL 64.20+5.40 62.88+2.75 59.58+0.96 74.24+2.48 69.63+1.46 T76.56+1.37 23.55+7.68 82.46+1.48  64.14 (8.00)
XGNN 72.99+2.56  63.62+1.35 62.55+0.81 72.40+3.05 T72.01+1.3¢ 73.15+2.83 20.96+8.00 82.55+0.65  65.03 (7.13)
GREA 66.87+7.53  63.14+2.19 59.20+1.42 73.17+1.80 67.82+4.67 73.52+2.75  12.77+1.71 82.40+1.98  62.36 (10.1)
GSAT 76.07+1.95 63.58+1.36 61.12+0.66 72.26+1.76 70.16+0.80 75.78+2.60 15.24+3.72 80.57+0.88  64.35 (8.63)
CAL 75.10+2.71  64.79+1.58 63.38+0.88 75.22+1.73 T71.08+4.83 7293+1.71  23.68+4.68 82.38+1.01  66.07 (5.38)
DisC 61.94+7.76¢  54.10+5.69 57.64+1.57 54.12+8.53 55.35+105 50.83+9.30 50.26+0.40 76.51+2.17  56.59 (12.4)
MoleOOD 61.49+2.19  62.12+1.91 58.74+1.73 75.10+0.73 60.35+11.3 73.69+2.29 21.04+3.36 81.56+0.35 61.76 (10.0)
GIL 70.56+4.46  61.59+3.16 60.46+1.91 75.25+1.14 70.07+4.31 75.76+2.23 12.55+1.26 83.31+0.50  63.69 (8.00)
CIGA 75.03+2.47  65.41+1.16 64.10+1.08 73.95+2.50 7T71.87+3.32 74.46+2.32 15.83+2.56 82.93+0.63  65.45 (5.88)
GALA 77.56+2.88  66.28+0.45 64.25+1.21 77.92+2.48 73.17+088 77.40+2.04 68.94+0.56 83.60+0.66 73.64 (1.00)
Oracle 84.77+0.58  82.66+1.19 84.53+0.60 91.08+1.43 88.58+0.64 92.50+0.53 67.76+0.60 91.40+0.26

T Averaged rank is also reported in the parentheses because of dataset heterogeneity. A lower rank is better.



Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications.

Obicct Causal Representation Learning on Graphs:
jectives [NeurlPS’22 Spotlight, NeurlPS’23a]

Useful Properties of the Causal Representations:
OOD Generalizability [NeurlPS’22, 23a],
Adversarial Robustness [ICLR22],

Interpretability [[CML’244a]

Implications

Realizat Optimization & Feature Learning schemes for Causal
ealizations Representation Learning: [ICLR’23a, NeurlPS’23Db]
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Adversarial Attack on Graph Neural Networks

Graph adversarial attacks aim to degenerate the performance by maliciously perturbing graphs:

Output
; Node | I I | I
[ ] & target node [] [] X
. . (v) mzwujhu
Perturbatton) 10 k — ) l:l:l:]:lZWu,ghu“
' "v.
attacker node How GIA Attacks CT T wunh”
GNN Embe dd ng
, For Node
; Train node classification mode! g

Node Output
Nodev[ T T T Jnk Embedding
Aggregate
o s
e o T o

Target gets
misclassified

injection attack
(Zlugner et al., 2018) (Zou et al., 2020) GMA vs. GIA
Adversarial Objective: min &, (f«(G)), s.t.]|G'— G| < /\
et
Graph Modification Attack (GMA): perturbation budgets

N+ ANy <A€eEZ A=Al SN\ EZ, |IX-X||,<e€ER

\M

Sometimes Expensive Modifying edges Perturbing node features
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Adversarial Attack on Graph Neural Networks

Graph adversarial attacks aim to degenerate the performance by maliciously perturbing graphs:

Nodev[ LT 1 Jnk Output modlflcatlt?:n attack

Embedding

[] S target node

[] [] k

™) A LT T w1y

Perturbat:on) | “ @ Ao JEEEDZ i
'xb-@

artacker node How GIA Attacks ) [TT T ot
. Train node classification model — 'g'I{“:d oo
o@) Target gets C@J @ A(iéi-]éi %
misclassified
w (T ew, e injection attack
(Zugner et al., 2018) (Zou et al., 2020) GMA vs. GIA
Adversarial Objective: min %, (f«(G"), s.t.||G’'— G| < /\
——
Graph Injection Attack (GIA): perturbation budgets

X' = A ],A': A Au 1V, ol <A\ e Z, 1 <d, <b€ZX e@XCRquEV
. Xatk Aatk Oatk

( A A ’

Practical

Carefully crafted node features

Injecting nodes Carefully injected connections
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Adversarial Attack on Graph Neural Networks
We compare GMA and GIA in a unified setting.

Training Inference

We adopt a unified setting, which is also used by Graph Robustness Benchmark (Zheng et al., NeurlPS 2021).

Evasion: Attack happens at testing time.

Inductive: Test nodes and corresponding edges are invisible to the model

during training, i.e., G.i, € G, G = G'.
Blackbox: The adversary can not access the architecture or the parameters of the target model.

est

. Find out more about the motivation for adopting this setting in our paper : )



Adversarial Attack on Graph Neural Networks

In general, GIA is more powerful than GMA.
GMA Perturbation Budgets

0 250 500 750 1000 1250 95
90 - ' ' '
v 80
0
EE 70
g 60 —o— GMA
3 MLP
DCE 50 1 —— GIA -
+ e s L
g;40 —— M2
= 30- 231 ---- MLP
-0 | | | | %% 250 500 _75'0 1000
0 50 100 150 200 250 GMA Perturbation Budgets
GIA Peturbation Budgets
GMA vs. GIA llustration of # , mapping GMA vs. GIA with A,

Theorem 1 (GIA is more harmful than GMA)
Given moderate perturbation budgets Ag, for GIA and Agua for GMA, that is, let
Acia < Aoua < 1 VI < |E|, for a fixed linearized GNN fy trained on G, assume that G has

no isolated nodes, and both GIA and GMA follow the optimal strategy, then,
V Acma 2 0,3 Agia £ Acma»

Z (Jo(Gg1a)) — Za(fo(Goma)) < 0,
where Ggra and Giya are perturbed graphs generated by GIA and GMA, respectively.
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Adversarial Attack on Graph Neural Networks

In general, GIA is more powerful than GMA. But, what is the price?

Given the example of / , , assume GIA uses PGD to
optimize X, iteratively, we find:

sim(X , X)) < sim(X , X )",

where f is the number of optimization steps and sim( - ) is
the cosine similarity.

lllustration of #, mapping

Definition 3 (Node-Centric Homophily)
The homophily of a node u can be defined with the similarity between the features of node

u and the aggregated features of its neighbors™:

. 1
h,=sim(r, X)), r, = Z X,

jex ) |/ did,

where d,, is the degree of node u and sim( - ) is a similarity metric, e.g., cosine similarity.
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Adversarial Attack on Graph Neural Networks

In general, GIA is more powerful than GMA. But, what is the price?

53

3.5

3.0+
237

2

@20 N GIA provably leads more damage to the
@ 1.5 | ‘ : -
Cadl T homophily of the original graph than GMA
S 0.5 —ah——il
0.0 0.2 0.4 0.6 0.8 1.0 “9.’96.2 00 02 ,04 06 08 1.0
Homophily e es s HOMOPhIly

Homophily changes before and after attacks ‘

Definition 3 (Homophily Defenders)
The homophily defenders can be implemented via edge pruning™:

where |

con

H® = READOUT(W, - AGG(l_,(u, V){H* D} |v € /() U {u})),

(u,v) elaborates the pruning condition for edge (u, v).



Adversarial Attack on Graph Neural Networks

In general, GIA is more powerful than GMA. But, what is the price?

GMA Perturbation Budgets

o0 250 500 750 1000 1250
3.5
2.5 %) orig oy ‘80 .'\u\_.\‘\—‘:j ﬂ _
' gia | 8 70 | | GIA aImOSt
5. 201 2.5 gma T S
= = n e e v ite |
g15| G20 ‘ = loses its power!
] O 1.5 Q0
1.0 1 e
a =M £ 401 —a— GIA
0.51 2 _ | —&— GMA
0.5- . = | T
0.0 ‘ T T r T - 0.0 T he | 20 I | | |
0.0 0.2 0.4 0.6 0.8 1.0 -02 00 02 04 06 08 1.0 0 50 100 150 200 250
Homophily Homophily GIA Peturbation Budgets
Homophily changes before and after attacks GMA vs. GIA when with defense

Theorem 2 (GIA loses power when against homophily defenders)

Given conditions in Theorem 1, consider a GIA attack, which (i) is mapped by 4, from from a GMA attack
that only performs edge addition perturbations, and (ii) uses a linearized GNN trained with at least one
node from each class in G as the surrogate model, and (iii) optimizes the malicious node features with

PGD. Assume that G has no isolated node, and has node features as x, = cE ey, - 1e R‘Where Y, is

the label of node u and e, € R4 is a one-hot vector with the Y -th entry being 1 and others being 0. Let the

minimum similarity for any pair of nodes connected in G be s; = min sim(X, X,) implemented with cosine
(u,v)eE

similarity. For a homophily defender g, that prunes edges (u,v) if sim(X, X)) < s;, we have:
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New Definition of Adversarial Attack on Graphs

". A ‘F:‘ r .. '.'- Y o
A 2 3 S WG
o gt B 2 22T
r i‘;‘,‘;ﬂ#":."[‘ \E{\‘:‘l}* g v
. -t LY ::h v 3 ‘ﬁ':..

AP

Prediction: Pig Unnoticeable Adversarial noise Prediction: Airliner
(Szegedy et al., 2014, Goodfellow et al., 2015; Kolter and Madry et al. 2019)

————
- -

- -

i i Normal
-------- Injected --------|njected
—H— Pruned —t— Pruned

Unnoticeable Adversarial noise? &
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HAOQ:

Harmonious Adversarial Objective

We propose a new objective respecting the homophily constraints.

GMA Perturbation Bucg ets GMA Perturbation Budgets

0 250 500 750 1000 1250 0 250 500 750 1000 1250 (gy
35 90 1 ' - ' - 90 1 - - - ~ e
orig ») 80 &
3.0 : i :
gia Q
254 hao 5 701
2 % 60-
» o— 2.0_
c Q = |
D 1.5 O 50 o 50
O oc —A— GIA
1.0 T 40-
u —e— GMA
0.5 ) | b— | MLP : B
- |— 30 7 -____________,_, 30 _ mm HAO i S =t e Normal
~02 00 0.2 0.4 _ofs 0.8 1.0 20 | | | | 205 == TR . . Injected
Fomophily 0 GIROPetulr(')lgatiolrioBudzggts > BIA Peturbation Budgets T Prunee
Homophily changes GMA vs. GIA without defense GMA vs. GIA when with defense  lllustration of GIA at node u
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Observing the homophily (Definition. 4) is differentiable with respect to X, we can integrate it into
the original adversarial objective as™:
min gz}lltk(fé*(G,)) = gatk(fé*(G,)) — IIC(G, G,),
IG'-GlI<A
where C(G, G’) is a regularization term based on homophily and A > 0 is the corresponding weight.



HAO: Harmonious Adversarial Objective

HAQ significantly improves the performance of all attacks on all datasets up to 30%. Adaptive injection
strategies can further advance the state of the art.

Homo: Homophily Defenders Table 1: Performance of non-targeted attacks against different models

Vanilla: Vanilla GNNs Cora ({) Citeseer(].) Computers({.) Arxiv(])
HAO Homo Robust Combo Homo Robust Combo Homo Robust Combo Homo Robust Combo
e.g., GCN, GAT, GraphSage.
Clean 85.74  86.00 87.29 7485 7546 75.87 ~93.17 9317 9332  70.77  71.27  71.40
= . PGD 83.08  83.08 85.74  74.70 74.70  75.19  84.91  84.91 91.41 68.18  68.18 71.11
ObUSt' Robust GNN pGD oo 52.60  62.60 7799 69.05 69.05 73.04 79.33 ~79.33 ~ 87.83 ~ ©50.38 ~ 62.89 68.68
models, or GNN models with MetaGIA 83.61 83.61 85.86 74.70 74.70 75.15 84.91 84.91 91.41  68.47  68.47 71.09
: MetaGIA T W 49.25  69.83 76.80 68.04 68.04 7125 7896 7896 90.25 57.05  63.30 69.97
robust tricks such as Iayer AGIAT 83.44  83.44 85.78  T4.72  74.72 75.20  85.21  85.21 01.40  68.07  68.07 71.01
normalisation, or adversarial AGIAT v . 4r24 6159 75.25 7024 70.24  71.80  75.14 ~ 75.14 ~ 86.02  59.32  65.62 69.92
frainin TDGIA 83.44  83.44 85.72 7476  T4.76 75.26  88.32  88.32  91.40  64.49  64.49 70.97
g. TDGIA v 56.95  73.38 79.45 60.91 60.91 7251 7477 7477 90.42  49.36 60.72 63.57
ATDGIA 83.07 83.07 85.39  74.72  74.72 75.12  86.03  86.03  91.41 66.95  66.95 71.02
Combo: Robust GNN ATDGIA v~ 4218 7030 ~ 76.87 ~ 61.08  61.08 71.22  80.86 8086 84.60 45.59  63.30  64.31
models Wlth robust trICkS MLP 61.75 65.55 R4.14 52.49

*The lower number indicates better attack performance. ' Runs with SeqGIA framework on Computers and Arxiv.

such as layer normalisation,
or adversarial training.

We evaluate with 38 defense models and report the maximum mean test robustness from multiple runs.
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HAO: Harmonious Adversarial Objective

HAQ significantly improves the performance of all attacks on all datasets up to 30%. Adaptive injection
strategies can further advance the state of the art.

Homo: Homophily Defenders Table 2: Performance of targeted attacks against different models
Vanilla: Vanilla GNNs, Computers(]) Arxiv(]) Aminer(}) Reddit(])
e.d., GCN, GAT, GraphSage. HAO Homo Robust Combo Homo Robust Combo Homo Robust Combo Homo  Robust Combo
Robust: Robust GNN Clean 92.68 ~92.68  92.83  69.41 71.59 ~72.09 6278  66.71 ~ 66.97  94.05 ~ 97.15 97.13
- NODUS PGD 88.13 88.13 91.56 69.19 69.19 71.31  53.16 53.16 56.31  92.44  92.44 93.03
models, or GNN models with PGD Voo 71.78 71.78  85.81 36.06 37.22  69.38  34.62  34.62 3947 = 56.44  86.12 84.94
- MetaGIA | 87.67 87.67 91.56 69.28  69.28  T71.22 4897  48.97 52.35  92.40  92.40 93.97
robust tricks such as layer MetaGIA & 70.21  71.61  85.83  38.44  38.44  48.06 41.12 41.12  45.16 46.75  90.06 90.78
normalisation, or adversarial AGIAT 87.57 87.57 91.58 66.19 66.19 70.06 50.50 50.50 53.69 91.62  91.62 93.66
. AGIAT v 6996 71.58  85.72 3884  38.84 6897 = 3594 3594  42.66 = 80.69  88.84 90.44
training. TDGIA 87.21 87.21 91.56 63.66 63.66 T71.06 51.34 51.34 54.82  92.19  92.19 93.62
_ TDGIA v 71.39  71.62 7T7T.15 4256 42.56 4253 2578 25.78 2994 78.16 85.06 88.66
Combo: Robust GNN ATDGIA 87.85 87.85 91.56 66.12 66.12 71.16 50.87 50.87 53.68 91.25 91.25 93.03
. . ATDGIA 7 72.00  72.53  78.35 38.28  40.81 39.47 2250 22.50 2891 64.09 89.06 88.91
MLP 84.11 52.49 32.80 70.69

such as layer normalisation,
or adversarial training.

*The lower number indicates better attack performance. ' Runs with SeqGIA framework.

We evaluate with 38 defense models and report the maximum mean test robustness from multiple runs.
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Causality of HAO for Graph Adversarial Attacks

GIA without HAO essentially breaks the causal relations between C and Y:

o) —(G., Cy—C

) ©
(v, (@ \.@

(a) Graph generation. (b) Adversarial graph generation.

GIA with HAO that retains the homophily unnoticeability, reveals the true underlying vulnerability of
GNNs and improves the robustness of GNNs:

Table 5.4: Performance of adversarial training methods under various graph adversarial attacks.

Clean PGD TDGIA MetaGIA
HAO v v v mean  worst
GCN 8495 3855 3855 40.67 43.78 3843 3880 46.25 38.43
GCN+FLAG 81.84 5995 5771 59.82 54.60 59.82 5472 61.21 54.60
GCN+PGD 86.19 72.76 72.13 80.34 7549 70.77 64.92 74.66 64.92
GCN+PGD v 86.94 72.88 72.63 81.21 79.22 7201 68.78 76.24 68.78
GCN+TDGIA 85.69 6629 6529 7574 7176 6492 58.83 69.79 58.83
GCN+TDGIA v 86.56 70.14 6940 7935 7587 69.02 6542 73.68 65.42
GNNGuard 85.07 8420 8470 8445 5373 84.82 4315 7430 43.15
GNNGuard+FLAG 8457 8432 8432 8432 69.77 8445 6492 7952 64.92
GNNGuard+PGD 86.44 86.69 85.69 8656 7151 86.19 57.08 80.02 57.08
GNNGuard+PGD v 86.44 86.31 86.06 86.19 7786 86.31 69.77 82.71 69.77
GNNGuard+TDGIA 8594 8594 8557 8582 7114 85.69 5646 79.51 56.46

59 GNNGuard+TDGIA v 85.57 85.69 8557 8532 76.61 8557 6517 81.36 65.17




Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications.

Obicct Causal Representation Learning on Graphs:
bjectives [NeurlPS’22 Spotlight, NeurlPS’23a]

Useful Properties of the Causal Representations:
OOD Generalizability [NeurlPS’22, 23a],
Adversarial Robustness [ICLR22],

Interpretability [[CML’244a]

Implications

Realizat Optimization & Feature Learning schemes for Causal
ealizations Representation Learning: [ICLR’23a, NeurlPS'23b]
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Interpretable Graph Neural Networks

Interpretability is crucial for a variety of scientific tasks:

R o | Py CO |y O

. - 0
Fragments most 0 oH 0.951 0.987 2.24 256 247 2
activated by NH . \é&
pro-solubility "O% CQ—. }% Y j>—< >- S H
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56

[b

0 999 0.994 255 2.28 2.06 2.18

235 227

ey (2
anlif-‘zgll IL;E]H}' 8.8 8.8 @Q%Q
Scientific Tasks in 2D Regular Graphs
e Un::i:ﬁ:Ed p | Protein
1' : ) :,(Ligand

. F" Bmdmg

> (.| Site
Carbonyl &
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Scientific Tasks in 3D Geometric Graphs

61 (Duvenaud et al., 2015, Yu et al., 2021 Miao et al.,
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Interpretable Graph Neural Networks

Interpretability and generalizability are two sides of the same coin, when considering distribution shifts
that are everywhere:

Environment #1: Class “House”

uuuuuuuuuuuuuuuu
.....................

or®;

Environment #2: Class “House”

m M Extracted Invariant Subgraph

Extractor Classifier House

62 ( Wu et al.,, 2022ab, Miao et al., 2022; Chen et al., 2022)



Expressivity Issue of Interpretable GNNs

Interpretable GNNs computes sampling probability using the attention mechanism:

6 House {ﬁ{ m
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Step1: Soft Subgraph Extraction
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Expressivity Issue of Interpretable GNNs

The sampling probability accumulates a subgraph distribution, where each subgraph corresponds to a

label distribution: Subgraph Multilinear Extension
ﬁ House TDH H:I_EL '
fY Cycle tl:lJ:L 8 N B8N B
Af fln tH O
. A dl ootln  an
| - | J = N & £ a
» “ s © EGC;%G[fC(GC)]
Hln
ahH
ullil
ahH
GNDtr,a é(::EGcrgJG[GC]
Step1: Subgraph Extraction Step2: Subgraph Classification

64 ( Wu et al.,, 2022ab, Miao et al., 2022: Chen et al., 2022, 2023)



Expressivity Issue of Interpretable GNNs

Existing Interpretable GNNs directly take the expected soft subgraph to predict the label:
Subgraph Multilinear Extension

2
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Step1: Subgraph Extraction
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Step2: Subgraph Classification

Message
Passing

( Wu et al.,, 2022ab, Miao et al., 2022: Chen et al., 2022, 2023)



Expressivity Issue of Interpretable GNNs

Given any non-linear GNNSs, or linear GNNs with more than two layers, soft message passing can not
approximate the multilinear extension:

06

B0
g Ty
BN
G g Dtr,a @c — EGcngG[GC]

Step1: Subgraph Extraction

Subgraph Multilinear Extension

2
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Step2: Subgraph Classification

( Wu et al.,, 2022ab, Miao et al., 2022: Chen et al., 2022, 2023)



Expressivity Issue of Interpretable GNNs

Failing to approximate SUbMT results in unfaithful interpretations:

W Extractor @ Classifier House

6/

Extracted Subgraph

20.0

—— GSAT —— GSAT
17.5 GMT-sam-10 8 GMT-sam-10
' GMT-sam- 100 GMT-sam- 100
15.0 I WA \
[ Rafy XY w6 i
© Y r—
2 10.0 ) v
8 75 ,' 8
CA.X g 'v“mv; g
S s.0 ‘ S
/ g | 2
2.5
0.0 0
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch
(a) SCM of XGNNEs. (b) SubMT on BA-2Motifs. (¢) SubMT on Mutag.

SUbMT approximation tailure shown with countertactual fidelty



GMT: Graph Multilinear Network

We propose GMT to bridges the gap by approximating and distilling the SubMT into soft message

passing: - _
Subgraph Multilinear Extension

£ House |:| H:I_EL
£y cyele Q:;{ MO\% %If:}L af i

I 2 W
gl ey =250
Tﬂ ®, Q: = S "” o

A f S Soft Message
fo(Ge) = fo(E Passing

GNDtT @C:E

Step1: Subgraph Extraction Step2: Subgraph Classification
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GMT: Graph Multilinear Network

GMT brings up to 10% AUROC improvements in interpretability and up to 10% Acc improvements in
generalizability on regular graphs.

Table 1. Interpretation Performance (AUC) on regular graphs.Results with the mean-1*std larger than the best baselines are shadowed.
SPURIOUS-MOTIF

GNN METHOD BA-2MOTIFS MUTAG MNIST-75sP b—05 b— 07 b—09
GNNEXPLAINER 67.35+3.29 61.98+5.45 59.01+2.04 62.62+1.35 62.25+3.61 H&8.86+1.93
PGEXPLAINER 84.59+9.09 60.91+17.10 69.34+4.32 69.5445.64 72.33+9.18 72.34+2.91

GIN GRAPHMASK 92.54+8.07 62.23+9.01 73.10+6.41 72.06+5.58 73.06+4.91 66.68+6.96
IB-SUBGRAPH 86.06+28.37 91.04+6.59 51.20+5.12 57.294+14.35 62.89+15.59 47.29+13.39
DIR 82.78+10.97 64.44428.81 32.35+9.39 78.15+1.32 77.68+1.22 49.08+3.66
GSAT 98.8540.47 99.35+0.95 80.47+1.86 74.49+-4.46 72.95+6.40 65.254+4.42

GIN GMT-LIN 98.36+0.56 99.86+0.09 82.98+1.49 76.06+6.39 76.50+5.63 80.57+2.59
GMT-SsAM 99.62+0.11 99.87+0.11 86.50+1.80 85.50+2.40 84.67+2.38 73.4945.33
GSAT 89.35+5.41 99.00+0.37 85.72+1.10 79.84+3.21 79.76+3.66 80.704+5.45

PNA GMT-LIN 95.79+7.30 99.58+0.17 85.02+1.03 80.19+2.22 84.74+1.82 85.08+3.85
GMT-sAM 99.60+0.48 99.89+0.05 87.34+1.79 88.27+1.71 86.58+1.89 85.26+1.92

Table 2. Prediction Performance (Acc.) on regular graphs. The shadowed entries are the results with the mean-1*std larger than the mean
of the corresponding best baselines.

SPURIOUS-MOTIF

GNN METHOD MoLH1V (AUC) GRAPH-SST2 MNIST-75SP

69

b=0.5 b=0.7 b=0.9
GIN 76.69+1.25 82.73+0.77 95.7440.36 39.87+1.30 39.04+1.62 38.57+2.31
GIN IB-SUBGRAPH 76.43+2.65 82.99+0.67 93.10+1.32 H4.3647.09 48.51+5.76 46.19+5.63
DIR 76.34+1.01 82.32+0.85 88.51+2.57 45.49+3.81 41.13+2.62 37.61+2.02
GSAT 76.12+0.91 83.1440.96 96.20+41.48 47.4545.87 43.57+2.43 45.39+5.02
GIN GMT-LIN 76.87+1.12 83.19+41.28 96.01+0.25 47.69+4.93 53.114+4.12 46.224+4.18
GMT-SAM 7'7.22+0.93 83.62+0.50 96.50+0.19 60.09+2.40 54.34+4.04 55.83+5.68
PNA 78.91+1.04 79.87+1.02 87.20+5.61 68.15+2.39 66.35+3.34 61.40+3.56
PNA GSAT 79.82+0.67 80.90+0.37 93.69+0.73 68.41+1.76 67.78+3.22 51.5142.98
GMT-LIN 80.05+0.71 81.18+0.47 94.44+4-0.49 69.33+1.42 64.4943.51 H8.30+6.61
GMT-SAM 80.58+0.83 82.36+0.96 95.75+0.42 71.9843.44 69.68+3.99 67.90+3.60




GMT: Graph Multilinear Network

GMT brings up to 7% AUROC and 18% Precision@12 improvements in interpretability and up to 4%

Acc improvements in generalizability on geometric graphs.

Table 3. Interpretation performance on geometric graphs. Results with the mean-1*std larger than the best baselines are shadowed.

ACTSTRACK TAU3MU SYNMoL PLBIND

ROC AUC PREC@12 ROC AUC PREC@12 ROC AUC PREC@12 ROC AUC PREC@12
RANDOM 50 21 50 35 50 31 50 45
GRADGEO 69.31+0.89 33.54+1.23 78.0440.57 64.18+1.25 76.384+4.96 64.72+3.75 H&8.114+2.91 64.78+4.73
BERNMASK H4.23+4.31 20.46+5.46 71.58+0.69 60.51+0.76 76.38+4.96 64.724+3.75 H2.23+4.45 41.504+9.77
BERNMASK-P 22.87+3.33 11.2945.46 70.72+5.10 H59.50+6.26 87.06+7.12 77.114+7.58 51.98+4.66 59.20+5.48
POINTMASK 49.20+1.51 20.54+1.71 55.93+4.85 39.65+7.14 66.46+6.86 H3.93+1.94 50.00+0.00 45.104+0.00
GRADGAM 75.19+1.91 75.94+2.16 76.18+2.62 62.05+2.16 60.31+4.95 52.35+11.02 48.61+2.34 55.10+10.57
LRI-BERNOULLI  74.38+4.33 81.42+1.52 78.23+1.11 65.604+2.44 89.22+3.58 68.76+7.35 H4.87+1.89 72.1242.60
GMT-LIN 77.45+169 81.81+157 79.17+0.82 68.94+1.08 96.17+1.44 86.33+6.16 H9.70+1.10 70.62+3.59
GMT-sAM 75.61+1.86 81.96+1.35 78.28+1.34 65.69+2.61 93.93+3.59 83.20+4.74 60.03+1.02 7T72.56+2.27

Table 4. Prediction performance (AUC) on geometric graphs.

ACTSTRACK TAU3IMU SYNMoOL PLBIND
ERM 97.4040.32 82.754+0.16 99.30+0.20 85.31+2.21
LRI-BERNOULLI 94.00+0.78 86.3640.06 99.30+0.15 85.8040.70
GMT-LIN 93.92+0.98 82.60+0.17 99.26+0.27 86.29+0.80
GMT-sAM 98.55+0.11 86.424+0.08 99.89+0.03 87.19+1.86
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Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications.

Obicct Causal Representation Learning on Graphs:
jectives [NeurlPS’22 Spotlight, NeurlPS’23a]

Useful Properties of the Causal Representations:
OOD Generalizability [NeurlPS’22, 23a],
Adversarial Robustness [ICLR22],

Interpretability [[CML244a]

Implications

Realizat Optimization & Feature Learning schemes for Causal
ealizations Representation Learning: [ICLR’23a, NeurlPS23b]
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The Optimization Dilemma in OOD Generalization

Traditional optimization strategy is not suitable for OOD generalization.

278770 le5legles {0 —
| % 00D solution
ﬁ S Init. point =+ Linear weighting
3 2 ;27 _2O~__ =* PAIR optimizer
‘; IRMX - 0.25 g ol ' Y Too weak!
% F||thr..H=-.. :0-00 % u\i 0 S0 %00 %S0 200 <>30
; CLOVE- : ? ! \ A ....-. 0.8
ANEEEEN '
e o NN Lo | [T TN
W
(a) Theoretical failure case.  (b) Gradient conﬂlcts. (c) Unreliable opt. scheme. e ..-.. _§
o HEEE ||, 2
The usual optimization formula of OOD objectives in practice: e I .
Pa | | | [ R
S P Too strong! '€® EEEE
min Loy +2: Loop. ) EEEEE
‘ (d) Exhaustive tuning.

A is hard to tune Regularization via some relaxed OOD objective
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The Optimization Dilemma in OOD Generalization

We demonstrate the issue using a widely studied and adopted frameworks: Invariant Risk Minimization.

\

Regularization via some relaxed OOD objective

e , A e N N
min Z Z (W e @), min Z Z (p), . 2
fowep oo » 0 “ » min ) L @) + AV, pe1 LW - @)l

: _ . ¢
s.t. w € argmin Z ,(we @), Ve € &, s.t. lewzlge(w - @)=0,Ve € &, e
N " y N p N Y
Linearized IRM with w € R4 Soften the constraints
IRM IRM ¢ IRMv 1
O & © &

71 (Arjovsky et al., 2019; Kamath et al., 2021)



The Optimization Dilemma in OOD Generalization

The practical variants of IRM can have very different behaviors from the original IRM.

74

T 00 T 05
p(1,-1) =—¢p(-1,1)

lllustration of IRMv1 failures

The ellipsoids are the solutions satistying
the invariant constraints in IRM ¢
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(Arjovsky et al., 2019; Kamath et al., 2021)



PAIR: Pareto Invariant Risk Minimization

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

The optimization of IRM essentially handles the frade-off between

Capturing the statistical correlations  Enforcing the invariance of learned correlations

Oh, it’s a Multi-Objective
| Optimization (MOO)!
min{L L H
f ERM:> OOD
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PAIR: Pareto Invariant Risk Minimization

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

Assume we have the Multi-Objective Optimization (MOQO) problem with 2 objectives:

min {Ll ’ LZ } !
f=w-o

e AT g ® 00
Bty (22
: =
Sy
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b et SR

==&
) ‘ " -
3R

0.25]

Sal o Asolution f (with {Ly, L,}') dominates f
s (T T Ty T T
e with (L, Ly))ifboth Ly < Ly and L < Iy
R  Pareto optimal solutions are the set of
solutions dominated by none;
* Their images form the Pareto front;

-t . .
are Al Pt .} Ay
& AL

r ¥ J""-'} -
i B e

L

015 ' ‘ 020 ' ‘ 0.25

L

Simulated Pareto front
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PAIR: Pareto Invariant Risk Minimization

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

Assume we have 2 training environments, a natural MOO formulation of IRMv1 is:

0.25

ERM Loss

1.2
1.0
0.8

0.6
0.4

0.20

(0(1, 1) = _(P(_]-; _1)

0.15

0.15 020 0.25

L | —6.5 | | | | 050 | | | | 015 | | | | 1!0

Simulated Pareto front lllustration of IRMv1 failures
Va4



PAIR: Pareto Invariant Risk Minimization

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

A PAIRed journey into the adventure of extrapolation: min { Lgry, Lirwms Lig,}'

f=w-e

{ Variance
N g 10°

| o

| 1072

1 1073

] 104

i 1075

05 0.0 | 0.5 | 1.0
(p(li _1) — _‘P(_l: 1)

(0(]4 1) = —(P(—l, _1)

Theoretical results (Informal):
IRMX solves the IRMv1 failures under any environment settings in (Kamath et al., 2021).
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PAIR: Pareto Invariant Risk Minimization

We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:

79

IRMX raises more challenges in the optimization:

min { Lggng, Ligvy Lrex | !

J=w-g

r % OOD solution
00D
----- Descent Phase
----- Balance Phase

LERM

* The Pareto front becomes more complicated: Exact Pareto optimal search

v The op

imizer needs to be able to reac

e There ca

N be multiple Pareto optimal so

N any Pareto optimal solutions!

utions:

v A preference of each objective is required! PAIR-o0 as the OOD optimizer;

Theoretical resu

Its (Informal):

Under mild assumptions, let fogop e the desired OOD solution w.r.t. an underlying preference pggop, PAIR-0
converges and approximates to fop for any approximated p oop.

(Mahapatra & Rajan 2020)



Causal Invariance Recovery Tests

We first test PAIR in a simple regression setting:

80

Regression target:
Y = sin(X;) + 1, only
depends on the x-axis;

Training envs:

Two elliptical regions
(Gaussian distributions)
marked in red;

Invariance:
The overlapped x-axis
region, i.e., [—2,2].
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Real-world Experiments

Table 2: OOD generalization performances on WILDS benchmark.

CAMELYON17  CIVILCOMMENTS FMoOW IWILDCAM  POVERTYMAP RXRX1 T
AVG. RANK(])

Avg. acc. (%) Worst acc. (%) Worst acc. (%) Macro F1 Worst Pearsonr  Avg. acc. (%)
ERM o 03(64) . 06.0(£36) 323 (%125)  30.8(%13)  0.45(+006) 29.9 (£04) 490 .
CORAL 59.5 (+7.7) 65.6 (+£1.3) 31.7 (£1.24) 32.7 (+0.2) 0.44 (+0.07) 28.4 (+0.3) 5.50
GroupDRO 68.4 (£7.3) 70.0 (£2.0) 30.8 (+0.81) 23.8 (+2.0) 0.39 (+0.06) 23.0 (+0.3) 6.83
IRMv1 64.2 (+8.1) 66.3 (+2.1) 30.0 (+1.37) 15.1 (£4.9) 0.43 (+0.07) 8.2 (£0.8) 7.67
V-REx 71.5 (£8.3) 64.9 (+1.2) 27.2 (+£0.78) 27.6 (£0.7) 0.40 (£0.06) 7.5 (£0.8) 7.00
Fish 74.3 (£7.7) 73.9 (+0.2) 34.6 (+0.51) 24.8 (+0.7) 0.43 (+0.05) 10.1 (£1.5) 4.33
LISA TAT (k6D 708 (£10)  335(+070)  240(+05) 048 (+007)  319(08) 267
IRMX 67.0 (+6.6) 74.3 (+0.8) 33.7 (+0.78) 26.6 (+0.9) 0.45 (+0.04) 28.7 (+0.2) 4.00
PAIR-O 74.0 (+7.0) 75.2 (+0.7) 35.5 (+1.13) 27.9 (+0.7) 0.47 (10.06) 28.8 (+0.1) 2.17

" Averaged rank is reported because of the dataset heterogeneity. A lower rank is better.

PAIR re-empowers IRMv1 and achieves new state-of-the-arts across 6 challenging realistic datasets.
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Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications.

Obicct Causal Representation Learning on Graphs:
jectives [NeurlPS’22 Spotlight, NeurlPS’23a]

Useful Properties of the Causal Representations:
OOD Generalizability [NeurlPS’22, 23a],
Adversarial Robustness [ICLR22],

Interpretability [[CML244a]

Implications

Realizat Optimization & Feature Learning schemes for Causal
ealizations Representation Learning: [ICLR’23a, NeurlPS'23b]
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A Debate on ERM Feature Learning

ERM learns predictive but spurious features, that are bad for out-of-distribution (OOD) generalization.

Rw ’z{ idﬂ

GD + ERM

—

ol
%S

camel

Training domain Tesf domain
Cows: 90% green background Cows: 0% green background
Camels: 90% background Camels: 0% background

83 ( Beery et al., 2018 Arjovsky et al., 2019, DeGrave et al. 2021, Ahuja et al., 20217)



A Debate on ERM Feature Learning

ERM already learns invariant features, that are useful for OOD generalization.

Training Data Train ERM BG-Based Reweighting FG-Based
Feature Extractor Prediction Prediction
- N ::'
Spurious: BG / AL ] [] 'I"“
Core: FG dddddd _ Retrain linear layer
[] BG Features '] FG Features Large weights ======= Small weights

84 ( Beery et al., 2018 Arjovsky et al., 2019, DeGrave et al. 2021, Ahuja et al., 20217)



A Debate on ERM Feature Learning

OOD generalization performance heavily rely on proper ERM pre-training.

col105edmnist025_irm_test_O_defauIt_avl_prel50 cgzlgredmnistoz5_irm_test_O_defauIt_avl_preO
—— train — train
0.8 —— test 0.8 —— test
0 0.6- > 0.6 -
C 0
- —
O O
< 0.41 20.4- w
0.2 0.2
0.0 . . ' ' 0.0 . . . .
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch

IRMv1 with ERM pretraining (150 epochs) IRMv1 w/o ERM pretraining

I

2
o o o ,
pretrain epochs

OOD performance on ColoredMNIST

85 (Zhang et al., 2022: Chen et al., 2022)



Data Model for OOD Generalization

* Twoclasses ¥y ={—1,+1}

®* Theinput x € R??is composed of

A feature patch X3 € R A noise patch X2 € R?

86

(Allen-Zzhu & L1 2079)



Data Model for OOD Generalization

° Twoclasses ¥ = {—1,+1}
® Theinput x € R2%is composed of a feature patch x; € R?and a noise patch x; € R

® The feature patch x; € R%is generated via:

X1 —'y Rad(«) - —|—|y Rad(5e) - vo!
/ TTTTTTTTTTTTT T TN

Invariant signal Spurious signal

Label: 1 Label: 1 Label: 0 Label: 0 Label: 1 Label: 0 Label: 1 Label: 0 Label: 0 Label: 1 Label: 1 Label: 0 Label: 1 Label: 1 Label: 1 Label: 0 Label: 1 Label: 1

10 1

20 4

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Label: 0 Label: 0 Label: 0 Label: 0 Label: 0 Label: 1 0 10 20 0 10 20 0 10 20 0 10 20 Label: 1 Label: 0 Label: 1 Label: 0 Label: 0 Label: 0

0 04 0
Label: 0 Label: 0 Label: 1 Label: 0 Label: 1
10 1 10 A 10 A
20 1 20 20
0 10 20 0 1I0 20 0 10 20
Label: 0 Label: 0 Label: 1 Label: 0 Label: 1 Label: 0

Label: 0 Label: 0 Label: 1 Label: 1

0 10 20 0 10 20

0 10 20

10 101

Label: 1 Label: 1 Label: 0 Label: 1

20 A 20 -

10 20 0 10 20
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ERM and IRM Feature Learning

o ™= == == == = \
{ : _ 1.0 -
I 10000+ | -~ inv. feat. inv. feat. | o
[ :| — spu. feat. 0.8 20 - —— spu. feat. '
|'g 8000 {] train loss | g train loss | 750
= : test loss E a0 {estioss
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— -1 - wn - 0_ 2 n
| v , ! 9 S 7 =
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: ' —10.0 ! ' -
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N o e e o = / Epoch pocC
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Theoretical Results (InTormai):

® ERM learns both invariant and spurious features.

® The invariant and spurious feature learning speed depends on the
correlation strength with the labels.
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ERM and IRM Feature Learning OOD training with IRMv1

gl EIN ImI =IIN IIE =N S - \ gt EEI EII EII =N N NN N SN IS S - - [
7 . 1.0\ 7 30- S
10000 - [! —— inwv. feat. | ~inv.feat. | o \
| — spu. feat. | oo l | 20; —— spu. feat. | |
2 8000 1 trainloss | | I_g‘ train loss | 750 I
c 1 test loss | E 49 test loss
g 6000 N = —106 T s | 0.725 3 |
= ! S ) 7 0.700 !
S 4000 : 0.4 2 0l
[ ,, I : 15 10 :
" 2000 I o2 | | 20 0.675
|
9 ! T 0.650 |
- . —10.0 | ' '
L 2000 PP e p \ 0 2000 oo r?ooo 6000 |
~EROCN o -~ N e e e e -7
FL w/ pre-training FL w/o pre-training

Theoretical Results (Informal):

®* IRMv1 cannot learn any features even at the beginning of training;

®* IRMv1 highly relies on ERM pre-training feature quality to extract
invariant features.
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Feature Learning with ERM

OQD training can only leverage limited invariant features for prediction.

ERM

7
7
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7
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FeAT: Feature Augmented Training

Leveraging the feature learning information can partition the dataset into retention sets D" and
augmentation sets D¢

ERM %Q

B Spurious Features [l Learned Features

Already learned features

| Invariant Features 777 Underlying Features




FeAT: Feature Augmented Training

Leveraging the feature learning information can partition the dataset into retention sets D" and

Augmentation | |

augmentation sets D¢

Features to be learned |

&N
~
~
~
~
'i
Da'

[ o B Spurious Features [l Learned Features
Already learned features

S o | Invariant Features 777 Underlying Features

AR TR TR
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FeAT: Feature Augmented Training

Performing feature augmentation and retention several rounds, we can obtain richer feature
representations that facilitate better OOD generalization.

7
7
7
7
7
7

B Spurious Features [l Learned Features

| Invariant Features 777 Underlying Features
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Experimental Results

FeAT boosts OOD performance of various objectives across various ColoredMNIST variant datasets.

Table 1: OOD performance on COLOREDMNIST datasets initialized with different representations.

D R o v
%@ o

pretyr’éin epochs

94

Stronger spurious signal

o

- N v -~

[ COLOREDMNIST-025 [ COLOREDMNIST-01

| ERM-NF ERM BONSAI FEAT |I ERM-NF ERM BONSAI FEAT |
ERM I17.14 (+0.73) 12.40 (40.32) 11.21 (+0.49) 17.27 (+2.55) | 73.06 (+0.71)  73.75 (+049) 70.95(+093) 76.05 (+1.45) |
IRMvV1 67.29 (£0.99) 59.81 (+4.46)  T70.28 (+0.72) T70.57 (+0.68)  76.89 (+3.25) 73.84(+0.56) T76.71(+4.10) 82.33 (+1.77)
V-REX || 68.62 (+0.73) 65.96 (+1.29)  70.31 (+0.66) T70.82 (+0.59) W 83.52 (+2.52) 81.20(+3.27) 82.61 (+1.76) 84.70 (+0.69) I
IRMX |67.00 (+£1.95) 64.05 (+£0.88)  70.46 (£042) TO.78 (+0.61) Iy 81.61 (+1.98) 75.97 (+0.88) 80.28 (+1.62) 84.34 (+0.97) |
IB-IRM | 56.09 (+2.04) 59.81 (+4.46)  70.28 (+0.72) T70.57 (+0.68)  75.81 (+0.63) 73.84(+056) 76.71(+4.10) 82.33 (+1.77) |
CLOVE |158.67 (+7.69) 65.78 (£0.00)  65.57 (£3.02) 65.78 (+2.68) 1 75.66 (£10.6) TA.T3(+036) 72.73 (+1.18) 75.12 (£1.08)
IGA |51.22 (£3.67) 62.43 (+£3.06) T0.17 (+089)  67.11 (+3.40) g 74.20 (£2.45) 73.74 (+£048) T4.72(+3.60) 83.46 (+2.17) |
FISHR 69.38 (+0.39) 67.74 (+0.90)  68.75 (+1.10) T0.56 (+0.97) 5 77.29 (+1.61) 82.23 (+1.35) 84.19 (+0.66) 84.26 (+0.93) ]
ORACLE \ 71.97 (+0.34) 86.595 (+0.27) P

Stronger invariant signal



Real-World Experimental Results

FeAT boosts OOD performance of various objectives across 6 challenging real-world OOD datasets.

95

Table 2: OOD generalization performances on WILDS benchmark.

METHOD

CAMELYON17

CivVILCOMMENTS

FMoOW

Avg. acc. (%)

Worst acc. (%)

Worst acc. (%)

IWILDCAM

AMAZON

RXRXx1

Macro F1

10-th per. acc. (%)

Avg. acc. (%)

DFR'

95.14 (£1.96)

95.28 (+0.19)

77.34 (+0.50)

82.24 (+0.13)
77.07 (£0.85)
81.26 (+1.86)

77.34 (+0.59)

79.56 (+0.38)

41.96 (£1.90)

56.17 (+0.62)
43.26 (+0.82)
58.98 (+1.17)

57.69 (0.78)

23.15 (+0.24)
52.44 (+0.34)
21.36 (10.41)
50.85 (+0.18)

23.54 (+0.52)

52.31 (+0.38)

48.00 (40.00)

49.33 (+0.00)

43.54 (+1.26)

Bonsai
Bonsai
Bonsai
Bonsai
Bonsai

ERM
GroupDRO
IRMvl
V-REx

GroupDRO
IRMvl1
V-REx

....................................

GroupDRO
IRMvl
V-REx

IRMX

74.30 (£5.96)
76.09 (+6.46)
75.68 (£7.41)
71.60 (£7.88)
73.49 (+9.33)

73.98 (+5.30)
72.82 (£5.37)
73.99 (+6.16)
76.39 (£5.32)
64.77 (+£10.1)

77.80 (42.48)
80.41 (+3.30)
77.97 (£3.09)
75.12 (£6.55)
76.91 (+6.76)

59.93 (+1.78)
69.50 (+0.15)
68.84 (£0.95)
69.03 (+1.08)
68.91 (£1.19)

63.34 (£3.49)
70.23 (£1.33)
68.39 (£2.01)
68.67 (+1.29)
69.56 (+0.95)

68.11 (+2.27)

71.29 (+0.46)

70.33 (£1.14)
70.97 (£1.06)
71.18 (£1.10)

33.98 (+1.02)
33.03 (+0.52)
33.45 (+1.07)
33.06 (£0.46)
33.13 (+0.86)

31.91 (zo0.51)
33.12 (£1.20)
32.51 (£1.23)
33.17 (£1.26)
32.63 (+0.75)

33.13 (+0.78)
33.59 (£1.67)

34.04 (+0.70)

34.00 (+0.71)
33.99 (+0.73)

28.22 (+0.78)
28.51 (£0.58)
28.76 (10.45)
28.82 (+£0.47)
28.82 (+0.47)

28.27 (+1.05)
27.16 (£1.18)
27.60 (£1.57)
25.81 (£0.42)
27.62 (+0.66)

28.47 (+0.67)
28.38 (+1.32)

29.66 (+1.52)

29.48 (+1.94)
29.04 (£2.96)

51.11 (+0.63)
52.00 (£0.00)
52.00 (£0.00)
52.44 (+0.63)
52.00 (+0.00)

48.58 (+0.56)
42.67 (£1.09)
47.11 (£0.63)
48.00 (+0.00)
46.67 (+0.00)

52.89 (+0.63)
52.58 (+0.56)
52.89 (+0.63)
52.89 (+0.63)
52.89 (+0.63)

30.21 (+0.09)
29.99 (+0.13)
30.10 (+0.05)
29.88 (+0.35)
30.10 (+0.05)

24.22 (+0.44)
22.95 (10.46)
23.35 (+0.43)
23.34 (+0.42)
23.34 (+0.40)

30.66 (+0.42)
29.99 (zo0.11)
29.99 (+0.19)
30.57 (+0.53)
29.92 (+o0.16)

"DFR/DFR-s use an additional OOD dataset to evaluate invariant and spurious feature learning, respectively.
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Learning Causality for Modern Machine Learning

Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications.

Obiect Causal Representation Learning on Graphs:
bjectives [NeurlPS’22 Spotlight, NeurlPS’23a]

Useful Properties of the Causal Representations:
OOD Generalizability [NeurlPS’22, 234a],
Adversarial Robustness [ICLR22],

Interpretability [[CML’244a]

Implications

Realizat Optimization & Feature Learning schemes for Causal
ealizations Representation Learning: [ICLR’23a, NeurlPS’23b]
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From Traditional ML to Modern ML with Large Pretrained Models

The undergoing revolution to the traditional ML is the emerge of the large pretrained models.

AlphaFold 3

Highly Aceurate
Biomolecular Structure
Predictions of All Life's

Molecules

AlphaFold Stable Diffusion ChatGPT
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The Large Pretrained Models

Large pretrained models such as CLIP/ChatGPT presents a paradigm shift to modern ML systems.

IMAGENET

\ DATASET RESNET101 CLIP VIT-L
o = TP e oo Effective
Pepper the T ' T 76.2% robustness
aussie pup —> Enccder
I
/ Tl T2 T3 TN 70.1% +6 %
—>» I L'Ty | I1'Ty | I1'Ts SO 88.9% +51%
- —>» b LT [Ty |IpT3 | .. |I'IN
72.3% +40%
Image I I:T; | T, | LT [T
Enzodar » 13 3°1q | 13717 | 13713 3'IN
_/_//_,/
I Ty In'TH | In'T In'T —
—» IN N 11 | IN12 | INT13 N IN e +74%

Web-scale training data: 400 million images collected from the web (dataset internal to OpenAl).

Multimodal contrastive learning: language supervision.

99 (Radford et al., 2027, OpenAl blog)



s OOD Generalization Solved by Large Pretrained Models?

Large Pretrained Model can not solve the spurious correlation issue.

Ice Bear in Snow (common) CLIP ACCU: 80.25 Ice Bear in Grass (counter) CLIP ACCU: 9.17

100 Chen*, Wang* Lin* etal., "CLIPs Always Generalize Better than ImagelNet Models?”, arXiv 2403. 7171497



|ls OOD Generalization Solved by Large Pretrained Models?

We collect 55 classes of animals with 7800 common examples and 6500 counter examples.

. Common Counter .
ImageNet label - Decline
background ] # data ] accuracy background ] # data l accuracy
10 brambling, Fringilla montifringilla green 117 78.63 white or blue 111 49.55 29.08
100 black swan, Cygnus atratus above water 204 93.63 ground 106 68.87 24.76
102 echidna, spiny anteater, anteater grass 125 20.00 tree 221 4.07 15.93
128 black stork, Ciconia nigra grass 81 77.78 sky 149 14.77 63.01
o T — i 276 hyena, hyaena grass 346 92.20 road 100 82.00 10.20
133 bittern Erass 205 — . ' ) . _ . _
144 pelican R B 232 277 red fox, Vulpes vulpes grass 143 69.23 road 105 59.05 10.18
150 sea lion sand 58 279 Arctic fox, white fox, Alopex lagopus SNOW 123 67.48 grass 238 26.05 41.43
16 bulbul white or blue 122 290 jaguar, panther, Panthera onca, Felis onca above water 65 33.85 tree 226 13.72 20.13
20 water ouzel, dipper above water 260 291 lion, king of beasts, Panthera leo grass 263 74.90 tree 222 45.95 28.96
23 Vulture sky 147 87.10 tree 9% 41.54 40.92
275 African huntine doe hvena doe. Cane huntine doe  Lvcaon pictus grASS 210 R5. 24 tree 72 63 89 21.35
276 hyena, hyaena grass 346 92.20 road 100 82.00 10.20
277 red fox, Vulpes vulpes grass 143 69.23 road 105 59.05 10.18
279 Arctic fox, white fox, Alopex lagopus SNOw 123 67.48 grass 238 26.05 41.43
290 jaguar, panther, Panthera onca, Felis onca above water 65 33.85 tree 226 13.72 20.13 .
201 lion, king of beasts, Panthera leo grom %3 7490 2 4595 | 2896 e Yes! Conce pt sh Ifts exam ples
293 cheetah, chetah, Acinonyx jubatus grass 212 80.66 tree 106 55.66 25.00 )
30 bullfrog, Rana catesbeiana above water 274 73.36 not in water 158 48.10 25.26 u u "
33 loggerhead, loggerhead turtle, Caretta caretta underwater 220 73.64 not in water 91 18.68 54.96 eXI St I n LA I O N C L I P Ie ad I n g
37 box turtle, box tortoise grass 65 73.85 ecarth 200 49.00 24 .85 )
39 common iguana, iguana, Iguana iguana carth 50 54.00 shrub 120 30.83 23.17 h (0] d .
41 whiptail, whiptail lizard earth 249 60.64 hand 100 4.00 56.64 to mo re t an 30 /O rop I n
42 agama rock 338 74.26 tree 142 28.87 45.39
49 African crocodile, Nile crocodile, Crocodylus niloticus earth 91 72.53 grass 84 35.71 36.81
54 hognose snake, puff adder, sand viper earth 203 22.17 grass 123 2.44 19.73 ave rag e aCCU racy .
56 king snake, kingsnake ecarth 228 30.26 grass 98 22.45 7.81
57 garter snake, grass snake grass 78 67.95 earth 249 19.68 48.27
58 water snake water 151 68.87 ground 163 1.23 67.65
70 harvestman, daddy longlegs, Phalangium opilio shrub 501 48.50 rock 125 20.00 28.50
71 scorpion indoor 79 29.11 outdoor 264 4.17 24.95
76 tarantula sand 231 81.82 grass 158 43.67 38.15
79 centipede white background 61 9 ostrich, Struthio camelus ground 206 79.61 | water 113 57.52 | 22.09
80 black grouse grass 52 Balanced error 7866 66.57 | 6595 32.68 | 33.89
81 ptarmigan SNOwW o7
83 prairie chicken, prairie grouse, prairie fowl grass 259
89 sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita tree 163 88.34 grass 100 63.00 25.34
9 ostrich, Struthio camelus ground 206 79.01 water 113 57.02 22.09
Balanced error 7866 66.57 6595 32.68
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Chen™, Wang”, Lin* etal., “CLIPs Always Generalize Better than ImageNet Models?”, arXiv 24053. 17497



|ls OOD Generalization Solved by Large Pretrained Models?

Symmetry is critical for reasoning tasks with LPMs, yet not sufficiently well learned.

?
i ) - Transformer 12L (Garg et al.)
yl yz yk ? i T 30 Transformer id. PE
T T T T —— DeepSet_small
: MLP — OLS
| / \ 25 - Ridge
- i + g 20
Auto-regressive Language Model : MLP @
1 ©
/ T \ 4 % 15
1 -
| a
T1 Y1 T2 Tk Yk Tq AN ;
- (z1,91) (z2,92) - (@K, Yk)
Figure 1. Illustration of linear regression ICL with auto-regressive Transformer (left) and DeepSet (right). Given k 0
input demonstrations (z1,y1), (x2,y2), ..., (k, Y ), and the query input z, Transformer adheres to the paradigm of the 0 20 40 60 80 100
auto-regressive language model to infer the labels in an auto-regressive manner. In contrast, DeepSet jointly models the k£ # in-context examples

sequential demonstrations as a set, and produces the output of the query based on the set-aggregated representations.

(b) OOD ICL with y = 2.

102 Chen et al., "Positional Information Matters for Invariant In-Context Learning: A Case Study of Simple Function Classes’, arXiv 23117. 18794



Combining the Best of Two Worlds

Large pretrained models provides new opportunities learning causality for modern ML :

Evaluation Causal Learning

N /"

Large Pretrained Models =——p Causality

4 "

Generalization Causal Reasoning
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Large Pretrained Model for Causal Representation Learning

Large pretrained models can extracts useful high-level hidden variables for causal discovery using
the rich world knowledge:

B [ (a) Factor Proposal J """"""""""""" { (b) Factor Annotation }

\

\ 4 \

/ /
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104 Chen*, Liu* et al., "Discovery of the Hidden World with Large [anguage Models”, arXiv 2402.0394 1



The Essential Role of Causality in Alignment

Aligning the rich knowledge to another modality or preferences requires proper causal disentanglement
of the important concepts:

o e w

______________________ . This molecule is a cyclohexadienecarboxylic acid having the MotifHallu — Node-centric
( \  C=C bonds at the 1- and 3-positions... i HIGHT
| HO E - This molecule has 1 carboxylic acids group, and 0.0k | 50
:\ 2 side-chain hydroxyls groups... w /: property Classification Roteasynthesis
0 OH e 60
' OH |
______________________ ’ T T T 40
20
TN
N /
{ // 3 Property Regress Foward Prediction
HIGHT &
Q O
O n
Can you tell me more
about this molecule?"
\otif 'S

Molecular Caption Reagent Prediction

(a) Overview of the HIGHT framework. (b) Summary of performance.

105 Chen et al., “Improving Graph-Language Alignment with Hierarchical Graph Tokenization”, arXiv 18D



New Foundations of Modern Machine Learning

Combining large pretrained models and causality opens up a new frontier for modern machine
learning.

New Understanding

New Methodology Large Pre-trained Models

1 1
\ 1
1

1

New Applications
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