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Machine Learning Systems are Everywhere

In our modern daily life, machine learning (ML) systems are everywhere.

Face ID Autonomous Driving Recommenders
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There is a paradigm shift challening the fundamental assumption in ML:

Training Distribution

From Traditional ML to Modern ML

Test Distribution

=

≠

Traditional Machine Learning

Modern Machine Learning
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The Out-of-Distribution Generalization Failure

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Koh et al., 2021)

Training Environment Various Test Environments
Waymo Open Challenge 

Distribution shifts/changes are everywhere. Existing ML models deployed in the wild can fail short in 
generalizing to new domains/environments, or across subpopulations.
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The Out-of-Distribution Generalization Failure
Distribution shifts/changes are everywhere. Existing ML models deployed in the wild can fail short in 
generalizing to new domains/environments, or across subpopulations.

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Koh et al., 2021)
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What is unchanged across changes?

How to Handle Changes?

Train Environment Test Environment
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Causal Invariance Principle: The causal mechanism generating the target variable from its direct 
parents is independent from the changes.

How to Handle Changes?

Train Environment Test Environment

P(Label | Animal shapes etc.) is invariant!
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Leveraging the principle of causal invariance, we can seek for 

How to Handle Changes?

(Peters et al., 2015; Arjovsky et al., 2019; Bottou et al., 2021;)
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Leveraging the principle of causal invariance, we can seek for 

How to Handle Changes?

(Peters et al., 2015; Arjovsky et al., 2019; Bottou et al., 2021;)

Invariant predictor                      implemented with invariant risk minimization (IRM):

minf=w◦ϕ

∑
e∈Etr

Le(w ◦ ϕ),

s. t. w ∈ argminw̄ Le(w̄ ◦ ϕ), ∀e ∈ Etr,

f = w ◦ φ

that is simultaneously optimal across different environments/domains.
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Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical 
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications. 

Objectives

Realizations

Causal Representation Learning on Graphs:
[NeurIPS’22 Spotlight, NeurIPS’23a] 

Optimization & Feature Learning schemes for Causal 
Representation Learning: [ICLR’23a, NeurIPS’23b]

Learning Causality for Modern Machine Learning

Implications
Useful Properties of the Causal Representations: 
OOD Generalizability [NeurIPS’22, 23a],
Adversarial Robustness [ICLR’22],
Interpretability [ICML’24a]
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Causal Representation Learning on Graphs

12

We seek to derive general causal representation learning objectives from a general view, i.e., graphs.



Out-of-Distribution Generalization on Graphs

13 (El-Aziz et al., 2020)



Out-of-Distribution Generalization on Graphs

X
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Out-of-Distribution Generalization on Graphs

X
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Out-of-Distribution Generalization on Graphs

( Knyazev et al. 2019; Hu et al., 2020; Koh et al., 2021; Gui et al., 2022; Chen et al., 2022)

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Structure-level shifts Attribute-level shifts Mixture of structure-level and attribute-level shifts
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Out-of-Distribution Generalization on Graphs

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Specifically, 
• Graphs are highly non-linear;



18

Out-of-Distribution Generalization on Graphs

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Specifically, 
• Graphs are highly non-linear;
• There could be attribute-level shifts;



19

Out-of-Distribution Generalization on Graphs

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Specifically, 
• Graphs are highly non-linear;
• There could be attribute-level shifts;
• There could be structure-level shifts;



20

Out-of-Distribution Generalization on Graphs

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Specifically, 
• Graphs are highly non-linear;
• There could be attribute-level shifts;
• There could be structure-level shifts;
• Both shifts can be mixed;
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Out-of-Distribution Generalization on Graphs

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

Specifically, 
• Graphs are highly non-linear;
• There could be attribute-level shifts;
• There could be structure-level shifts;
• Both shifts can be mixed;
• Environment partitions are expensive;
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Out-of-Distribution Generalization on Graphs
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We formulate the most comprehensive causal models for distribution shifts on graphs.

Structural Causal Models for Graph Generation
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We formulate the most comprehensive causal models for distribution shifts on graphs.

Structural Causal Models for Graph Generation
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CIGA: Causality Inspired Invariant Graph LeArning
We propose a new framework, CIGA, that approaches the classification in two steps:
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We propose a new framework, CIGA, that approaches the classification in two steps:
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CIGA: Causality Inspired Invariant Graph LeArning
CIGA achieves the state-of-the-art OOD generalization performance under 30+ datasets and graph 
distribution shifts, including a OOD drug property prediction task.
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CIGA: Causality Inspired Invariant Graph LeArning
CIGA achieves the state-of-the-art OOD generalization performance under 30+ datasets and graph 
distribution shifts, including a OOD drug property prediction task.



31

Causal Interpretable Patterns for Scientific Practice
CIGA finds interesting critical functional groups/sub-molecules in OOD molecular affinity prediction.
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OOD Generalization Challenges Solved by CIGA

😋

😋

😋

😋

🤔

Let us trace back the challenges in OOD generalization on graphs…
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The “Free Lunch Dilemma” in OOD Generalization on Graphs

Let us considering the data generative model with Partial Informative Invariant Features:

(Yu et al., 2021; Miao et al., 2022;)

“House”

Invariant correlationSpurious correlation



34

The “Free Lunch Dilemma” in OOD Generalization on Graphs

One line of works aim to generate new environments based on the existing extracted subgraphs:

( Wu et al., 2022ab; Liu et al., 2022)

Extractor

Extracted “Invariant” Subgraph

Environment #1: Class “House”

Environment #2: Class “House”

Generator

Environment #3: Class “House”

😋
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The “Free Lunch Dilemma” in OOD Generalization on Graphs

One line of works aim to generate new environments based on the existing extracted subgraphs:

Extractor

Extracted “Invariant” Subgraph

Generator

Environment #3: Class “House”
Environment #?: Class “House”

Environment #?: Class “House”

More severe biases!

( Wu et al., 2022ab; Liu et al., 2022)

🥲
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The “Free Lunch Dilemma” in OOD Generalization on Graphs

Another line of works aim to infer environment labels for learning the underlying invariance:

Inference

Environment #?: Class “House”

Environment #?: Class “House”

( Li et al., 2022; Yang et al., 2022)

Environment #1: Class “House”

Environment #2: Class “House”

😋



37

The “Free Lunch Dilemma” in OOD Generalization on Graphs

Another line of works aim to infer environment labels for learning the underlying invariance:

Inference

Environment #?: Class “Grid”

Environment #?: Class “Grid”

( Li et al., 2022; Yang et al., 2022)

Environment #1: Class “Grid”

Environment #2: Class “Grid”

What if the underlying
invariant subgraph is 
REVERSED?

🥲
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Impossibility Results for OOD Generalization on Graphs

OOD generalization on graphs is fundamentally more challenging than that on Euclidean data:

?

Environment #?: Class “House”

Environment #?: Class “House”

It is fundamentally impossible to identify the 
underlying invariant subgraph without further 
inductive biases.
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Failures of Environment Generation

How can we address environments generation failures?

Extractor

Extracted Invariant Subgraph

Environment #?: Class “House”

Environment #?: Class “House”

( Wu et al., 2022ab; Liu et al., 2022)

For any spurious subgraph, there exists 
two underlying environments, such 
that the spurious correlation varies.
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Failures of Environment Inference

How can we address environment inference failures?

Environment #?: Class “House”

Environment #?: Class “House”

( Li et al., 2022; Yang et al., 2022)

Environment #?: Class “Grid”

Environment #?: Class “Grid”OR

For all 
environments, 
either spurious 
correlation is 
stronger or 
weaker.

Either
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Invariant Graph Learning with Minimal Assumptions

How can we address environment inference failures?

For all environments, either spurious 
correlation is stronger or weaker.

For any spurious subgraph, there exists 
two underlying environments, such 
that the spurious correlation varies.

Environment Generation?

Environment Inference?

Invariant correlation stronger: 
CIGA (Chen et al., 2022)

Spurious correlation stronger: 
DisC (Fan et al., 2022)

( Lin et al., 2022; Fan et al., 2022; Chen et al., 2022)

More assumptions needed!🥲



43

GALA: invariant GrAph Learning Assistant

Improving the contrastive invariant subgraph extraction via an Environment Assistant:

Cycle

House
{Gn}

{Gp}

“Cycle”“House”
Training Data Proxy Predictions

Graph Labels

“House”

“Cycle”
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Proof-of-Concept Experiments

Given the same data generation process, and the aforementioned variation sufficiency 
and variation consistency assumptions, when the environment assistant model learns 
properly distinguishes the variations of the spurious subgraphs, GALA provably 
identifies the invariant subgraph for OOD generalization.

Stronger spurious 
correlations

Stronger invariant 
correlations
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Real-World Experiments
GALA consistently improves the OOD generalization performance under various real-world graph
distribution shifts on a number of realistic graph benchmarks:
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Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical 
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications. 

Objectives

Realizations

Causal Representation Learning on Graphs:
[NeurIPS’22 Spotlight, NeurIPS’23a] 

Optimization & Feature Learning schemes for Causal 
Representation Learning: [ICLR’23a, NeurIPS’23b]

Learning Causality for Modern Machine Learning

Implications
Useful Properties of the Causal Representations: 
OOD Generalizability [NeurIPS’22, 23a],
Adversarial Robustness [ICLR’22],
Interpretability [ICML’24a]
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Adversarial Attack on Graph Neural Networks
Graph adversarial attacks aim to degenerate the performance by maliciously perturbing graphs:
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Adversarial Attack on Graph Neural Networks
Graph adversarial attacks aim to degenerate the performance by maliciously perturbing graphs:
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Adversarial Attack on Graph Neural Networks
We compare GMA and GIA in a unified setting.
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Adversarial Attack on Graph Neural Networks
In general, GIA is more powerful than GMA.
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Adversarial Attack on Graph Neural Networks
In general, GIA is more powerful than GMA. But, what is the price?
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New Definition of Adversarial Attack on Graphs
We rethink the ill-defined unnoticeability constraints for prevalent graph adversarial attacks…
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HAO: Harmonious Adversarial Objective 
We propose a new objective respecting the homophily constraints.
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HAO: Harmonious Adversarial Objective 
HAO significantly improves the performance of all attacks on all datasets up to 30%. Adaptive injection 
strategies can further advance the state of the art.
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HAO: Harmonious Adversarial Objective 
HAO significantly improves the performance of all attacks on all datasets up to 30%. Adaptive injection 
strategies can further advance the state of the art.
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Causality of HAO for Graph Adversarial Attacks
GIA without HAO essentially breaks the causal relations between C and Y:

GIA with HAO that retains the homophily unnoticeability, reveals the true underlying vulnerability of 
GNNs and improves the robustness of GNNs:
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Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical 
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications. 

Objectives

Realizations

Causal Representation Learning on Graphs:
[NeurIPS’22 Spotlight, NeurIPS’23a] 

Optimization & Feature Learning schemes for Causal 
Representation Learning: [ICLR’23a, NeurIPS’23b]

Learning Causality for Modern Machine Learning

Implications
Useful Properties of the Causal Representations: 
OOD Generalizability [NeurIPS’22, 23a],
Adversarial Robustness [ICLR’22],
Interpretability [ICML’24a]
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Interpretable Graph Neural Networks
Interpretability is crucial for a variety of scientific tasks: 

(Duvenaud et al., 2015; Yu et al., 2021; Miao et al., 2022; Miao et al., 2023)

Scientific Tasks in 3D Geometric Graphs

Scientific Tasks in 2D Regular Graphs
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Interpretable Graph Neural Networks
Interpretability and generalizability are two sides of the same coin, when considering distribution shifts 
that are everywhere:

( Wu et al., 2022ab; Miao et al., 2022; Chen et al., 2022)

Environment #1: Class “House”

Environment #2: Class “House”

Extractor “House”

Extracted Invariant Subgraph

Classifier
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Expressivity Issue of Interpretable GNNs
Interpretable GNNs computes sampling probability using the attention mechanism:

( Wu et al., 2022ab; Miao et al., 2022; Chen et al., 2022, 2023)

G ∼ Dtr

30%25%

20%25%

Ĝc = E
Gc

g

∼G
[Gc]

Cycle

House

Step1: Soft Subgraph Extraction
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Expressivity Issue of Interpretable GNNs
The sampling probability accumulates a subgraph distribution, where each subgraph corresponds to a 
label distribution:

( Wu et al., 2022ab; Miao et al., 2022; Chen et al., 2022, 2023)

G ∼ Dtr

30%25%

20%25%

Ĝc = E
Gc

g

∼G
[Gc]

Cycle

House

Step1: Subgraph Extraction Step2: Subgraph Classification

25% 20%

25% 30%

≠
E
Gc

g

∼G
[fc(Gc)]

Subgraph Multilinear Extension
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Expressivity Issue of Interpretable GNNs
Existing Interpretable GNNs directly take the expected soft subgraph to predict the label:

( Wu et al., 2022ab; Miao et al., 2022; Chen et al., 2022, 2023)

G ∼ Dtr

30%25%

20%25%

Ĝc = E
Gc

g

∼G
[Gc]

Cycle

House

Step1: Subgraph Extraction Step2: Subgraph Classification

25% 20%

25% 30%

≠
E
Gc

g

∼G
[fc(Gc)]

fc(Ĝc) = fc(E
Gc

g

∼G
[Gc])

Subgraph Multilinear Extension

Soft Message 
Passing
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Expressivity Issue of Interpretable GNNs
Given any non-linear GNNs, or linear GNNs with more than two layers, soft message passing can not 
approximate the multilinear extension:

( Wu et al., 2022ab; Miao et al., 2022; Chen et al., 2022, 2023)

G ∼ Dtr

30%25%

20%25%

Ĝc = E
Gc

g

∼G
[Gc]

Cycle

House

Step1: Subgraph Extraction Step2: Subgraph Classification

25% 20%

25% 30%

≠
E
Gc

g

∼G
[fc(Gc)]

fc(Ĝc) = fc(E
Gc

g

∼G
[Gc])

Subgraph Multilinear Extension

Soft Message 
Passing

25% 20%

25% 30%

≠
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Expressivity Issue of Interpretable GNNs
Failing to approximate SubMT results in unfaithful interpretations:

SubMT approximation failure shown with counterfactual fidelty

Extractor “House”

Extracted Subgraph

Classifier
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GMT: Graph Multilinear Network
We propose GMT to bridges the gap by approximating and distilling the SubMT into soft message 
passing:

G ∼ Dtr

30%25%

20%25%

Ĝc = E
Gc

g

∼G
[Gc]

Cycle

House

Step1: Subgraph Extraction Step2: Subgraph Classification

25% 20%

25% 30%

≠
E
Gc

g

∼G
[fc(Gc)]

fc(Ĝc) = fc(E
Gc

g

∼G
[Gc])

Subgraph Multilinear Extension

Soft Message 
Passing

25% 20%

25% 30%

≠ =
GMT
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GMT: Graph Multilinear Network
GMT brings up to 10% AUROC improvements in interpretability and up to 10% Acc improvements in 
generalizability on regular graphs.
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GMT: Graph Multilinear Network
GMT brings up to 7% AUROC and 18% Precision@12 improvements in interpretability and up to 4% 
Acc improvements in generalizability on geometric graphs.
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Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical 
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications. 

Objectives

Realizations

Causal Representation Learning on Graphs:
[NeurIPS’22 Spotlight, NeurIPS’23a] 

Optimization & Feature Learning schemes for Causal 
Representation Learning: [ICLR’23a, NeurIPS’23b]

Learning Causality for Modern Machine Learning

Implications
Useful Properties of the Causal Representations: 
OOD Generalizability [NeurIPS’22, 23a],
Adversarial Robustness [ICLR’22],
Interpretability [ICML’24a]



72

The Optimization Dilemma in OOD Generalization
Traditional optimization strategy is not suitable for OOD generalization.

Too strong!

Too weak!
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The Optimization Dilemma in OOD Generalization
We demonstrate the issue using a widely studied and adopted frameworks: Invariant Risk Minimization.
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The Optimization Dilemma in OOD Generalization
The practical variants of IRM can have very different behaviors from the original IRM.
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PAIR: Pareto Invariant Risk Minimization
We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:
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PAIR: Pareto Invariant Risk Minimization
We propose PAIR, that tackles the optimization from a multi-objective optimization perspective:
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Causal Invariance Recovery Tests
We first test PAIR in a simple regression setting:
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Real-world Experiments
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Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical 
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications. 

Objectives

Realizations

Causal Representation Learning on Graphs:
[NeurIPS’22 Spotlight, NeurIPS’23a] 

Optimization & Feature Learning schemes for Causal 
Representation Learning: [ICLR’23a, NeurIPS’23b]

Learning Causality for Modern Machine Learning

Implications
Useful Properties of the Causal Representations: 
OOD Generalizability [NeurIPS’22, 23a],
Adversarial Robustness [ICLR’22],
Interpretability [ICML’24a]
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A Debate on ERM Feature Learning

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

ERM learns predictive but spurious features, that are bad for out-of-distribution (OOD) generalization.
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A Debate on ERM Feature Learning

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

ERM already learns invariant features, that are useful for OOD generalization.
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A Debate on ERM Feature Learning
OOD generalization performance heavily rely on proper ERM pre-training.

(Zhang et al., 2022; Chen et al., 2022)

OOD performance on ColoredMNIST

IRMv1 with ERM pretraining (150 epochs) IRMv1 w/o ERM pretraining
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Data Model for OOD Generalization

(Allen-Zhu & Li 2019)

• Two classes 

• The input                is composed of

y = {−1,+1}

x ∈ R
2d

x2 ∈ R
dx1 ∈ R

dA feature patch A noise patch 
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Data Model for OOD Generalization

(Allen-Zhu & Li 2019)

• Two classes 

• The input                is composed of a feature patch                 and a noise patch

• The feature patch                is generated via: 

y = {−1,+1}

x ∈ R
2d

x1 ∈ R
d

Invariant signal

x2 ∈ R
d

x1 ∈ R
d

x1 = y · Rad(α) · v1 + y · Rad(βe) · v2

Spurious signal
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ERM and IRM Feature Learning

• ERM learns both invariant and spurious features. 
• The invariant and spurious feature learning speed depends on the 

correlation strength with the labels. 

ERM pre-training FL w/ pre-training FL w/o pre-training
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ERM and IRM Feature Learning

FL w/ pre-training FL w/o pre-training

• IRMv1 cannot learn any features even at the beginning of training;
• IRMv1 highly relies on ERM pre-training feature quality to extract 

invariant features.

OOD training with IRMv1
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Feature Learning with ERM

Dtr

Spurious Features

Invariant Features

Learned Features

Underlying Features

ϕFeaturizer
ERM ŷw

OOD training can only leverage limited invariant features for prediction.

IRMv1
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FeAT: Feature Augmented Training

Dtr

Spurious Features

Invariant Features

Learned Features

Underlying Features

ϕFeaturizer
ERM ŷw

Leveraging the feature learning information can partition the dataset into retention sets and 
augmentation sets     .

ERM

D
a

D
r

Already learned features

Features to be learned

D
r

D
a

🔥

❄
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FeAT: Feature Augmented Training

Dtr

Spurious Features

Invariant Features

Learned Features

Underlying Features

ϕFeaturizer ŷw

Leveraging the feature learning information can partition the dataset into retention sets and 
augmentation sets     .

ERM

D
a

D
r

Already learned features

Features to be learned

D
r

D
a

w
′Augmentation

Retention

🔥

🔥

🔥
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FeAT: Feature Augmented Training

Dtr

Spurious Features

Invariant Features

Learned Features

Underlying Features

ϕFeaturizer
FeAT

Performing feature augmentation and retention several rounds, we can obtain richer feature
representations that facilitate better OOD generalization.

D
a

D
r

FeAT

ŷwf
IRMv1

🔥

❄
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Experimental Results

FeAT boosts OOD performance of various objectives across various ColoredMNIST variant datasets.

Stronger spurious signal Stronger invariant signal
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Real-World Experimental Results
FeAT boosts OOD performance of various objectives across 6 challenging real-world OOD datasets.
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FeAT Learns Richer Meaningful Features

FeAT

Bonsai 

ERM 
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Traditional ML assumes train and test data are iid., i.e., independently sampled from an identical 
distribution, while data is often OOD, i.e., out-of-distribution, in real-world applications. 

Objectives

Realizations

Causal Representation Learning on Graphs:
[NeurIPS’22 Spotlight, NeurIPS’23a] 

Optimization & Feature Learning schemes for Causal 
Representation Learning: [ICLR’23a, NeurIPS’23b]

Learning Causality for Modern Machine Learning

Implications
Useful Properties of the Causal Representations: 
OOD Generalizability [NeurIPS’22, 23a],
Adversarial Robustness [ICLR’22],
Interpretability [ICML’24a]
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From Traditional ML to Modern ML with Large Pretrained Models
The undergoing revolution to the traditional ML is the emerge of the large pretrained models.

ChatGPTStable DiffusionAlphaFold



9999

The Large Pretrained Models

(Radford et al., 2021; OpenAI blog)

Large pretrained models such as CLIP/ChatGPT presents a paradigm shift to modern ML systems.

Web-scale training data: 400 million images collected from the web (dataset internal to OpenAI).

Multimodal contrastive learning: language supervision.
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Is OOD Generalization Solved by Large Pretrained Models?
Large Pretrained Model can not solve the spurious correlation issue.

Ice Bear in Snow (common) CLIP ACCU: 80.25 Ice Bear in Grass (counter) CLIP ACCU: 9.17

Frequently misclassified as Brown Bear !

Chen* , Wang*, Lin*, et al., “CLIPs Always Generalize Better than ImageNet Models?”, arXiv 2403.11497
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We collect 55 classes of animals with 7800 common examples and 6500 counter examples. 

• Yes! Concept shifts examples 
exist in LAION CLIP, leading 
to more than 30% drop in 
average accuracy. 

Chen* , Wang*, Lin*, et al., “CLIPs Always Generalize Better than ImageNet Models?”, arXiv 2403.11497

Is OOD Generalization Solved by Large Pretrained Models?
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Symmetry is critical for reasoning tasks with LPMs, yet not sufficiently well learned.

Is OOD Generalization Solved by Large Pretrained Models?

Chen et al., “Positional Information Matters for Invariant In-Context Learning: A Case Study of Simple Function Classes”, arXiv 2311.18194
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Combining the Best of Two Worlds
Large pretrained models provides new opportunities learning causality for modern ML :

Evaluation

Generalization

Large Pretrained Models Causality

Causal Learning

Causal Reasoning
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Large Pretrained Model for Causal Representation Learning
Large pretrained models can extracts useful high-level hidden variables for causal discovery using 
the rich world knowledge:

Chen* , Liu*, et al., “Discovery of the Hidden World with Large Language Models”, arXiv 2402.03941



105105

The Essential Role of Causality in Alignment
Aligning the rich knowledge to another modality or preferences requires proper causal disentanglement 
of the important concepts:

Chen et al., “Improving Graph-Language Alignment with Hierarchical Graph Tokenization”, arXiv TBD
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New Foundations of Modern Machine Learning
Combining large pretrained models and causality opens up a new frontier for modern machine 
learning. 

New Understanding

New Methodology

New Applications

Large Pre-trained Models
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