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A Debate on ERM Feature Learning

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

ERM learns predictive but spurious features, that are bad for out-of-distribution (OOD) generalization.
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A Debate on ERM Feature Learning

(Wortsman et al., 2021; Kumar et al., 2022)

Fine-tuning generalist models with ERM can learns predictive but spurious features, that are bad for 
OOD generalization.
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A Debate on ERM Feature Learning

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

ERM already learns invariant features, that are useful for OOD generalization.
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A Debate on ERM Feature Learning

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

ERM already learns invariant features, that are useful for OOD generalization.
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A Debate on ERM Feature Learning

OOD generalization performance heavily rely on proper ERM pre-training.

(Zhang et al., 2022; Chen et al., 2022)

OOD performance on ColoredMNIST

IRMv1 with ERM pretraining (150 epochs) IRMv1 w/o ERM pretraining
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Data Model for OOD Generalization

(Allen-Zhu & Li 2019)

• Two classes 

• The input                is composed of

y = {−1,+1}

x ∈ R
2d

x2 ∈ R
dx1 ∈ R

dA feature patch A noise patch 
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Data Model for OOD Generalization

(Allen-Zhu & Li 2019)

• Two classes 

• The input                is composed of a feature patch                 and a noise patch

• The feature patch                is generated via: 

y = {−1,+1}

x ∈ R
2d

x1 ∈ R
d

Invariant signal

x2 ∈ R
d

x1 ∈ R
d

x1 = y · Rad(α) · v1 + y · Rad(βe) · v2

Spurious signal
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ERM and IRM Feature Learning

• ERM learns both invariant and spurious features. 
• The invariant and spurious feature learning speed depends on the 

correlation strength with the labels. 

ERM pre-training FL w/ pre-training FL w/o pre-training
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ERM and IRM Feature Learning

FL w/ pre-training FL w/o pre-training

• IRMv1 cannot learn any features even at the beginning of training;
• IRMv1 highly relies on ERM pre-training feature quality to extract 

invariant features.

OOD training with IRMv1
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ERM and IRM Feature Learning

FL w/ pre-training FL w/o pre-training

• IRMv1 cannot learn any features even at the beginning of training;
• IRMv1 highly relies on ERM pre-training feature quality to extract 

invariant features.

Good OOD performance requires good 

pre-training feature quality!
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Feature Learning with ERM

Consider the following dataset dominated by spurious features:

Spurious Features

Invariant Features

Learned Features

Underlying Features

Dtr

ϕFeaturizer
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Feature Learning with ERM

ERM learns the spurious features more than the invariant features.

Spurious Features

Invariant Features

Learned Features

Underlying Features

Dtr

ϕFeaturizer
ERM w

ERM
ŷ
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Feature Learning with ERM

Dtr

Spurious Features

Invariant Features

Learned Features

Underlying Features

ϕFeaturizer
ERM ŷw

OOD training can only leverage limited invariant features for prediction.

IRMv1
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FeAT: Feature Augmented Training

Dtr

Spurious Features

Invariant Features

Learned Features

Underlying Features

ϕFeaturizer
ERM ŷw

Leveraging the feature learning information can partition the dataset into retention sets and 
augmentation sets     .

ERM

D
a

D
r

Already learned features

Features to be learned

D
r

D
a
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FeAT: Feature Augmented Training

Dtr

Spurious Features

Invariant Features

Learned Features

Underlying Features

ϕFeaturizer ŷw

Leveraging the feature learning information can partition the dataset into retention sets and 
augmentation sets     .

ERM

D
a

D
r

Already learned features

Features to be learned

D
r

D
a

w
′Augmentation

Retention
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FeAT: Feature Augmented Training

Dtr

Spurious Features

Invariant Features

Learned Features

Underlying Features

ϕFeaturizer
FeAT

Performing feature augmentation and retention several rounds, we can obtain richer feature
representations that facilitate better OOD generalization.

D
a

D
r

FeAT

ŷwf
IRMv1
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Proof-of-Concept Experimental Results

FeAT boosts OOD performance of various objectives across various ColoredMNIST variant datasets.

Stronger spurious signal Stronger invariant signal
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Real-World Experimental Results
FeAT boosts OOD performance of various objectives across 6 challenging real-world OOD datasets.
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Real-World Experimental Results
FeAT boosts OOD performance of various objectives across 6 challenging real-world OOD
generalization datasets.
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FeAT Learns Richer Meaningful Features
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FeAT Learns Richer Meaningful Features

FeAT

Bonsai 

ERM 
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We established a feature learning framework and theoretically revealed that ERM will 
learn both invariant and spurious features.

We also show that the performance of OOD objectives like IRM highly rely on the 
features quality, which motivates to learn richer features before OOD training.

We propose a novel rich feature learning algorithm FAT and conduct extensive 
experiments in challenging OOD benchmarks to verify the effectiveness of FAT.

Contact: yqchen@cse.cuhk.edu.hk 

Thank you!

Summary

Paper Code 
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