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Out-of-Distribution generalization

Models learned with Empirical Risk Minimization (ERM) are often:


- prone to spurious correlations 


- can hardly generalize to OOD data  


( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021; Zhang et al., 2022)
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The goal of OOD generalization:


given a subset of training environments/domains , 

where each  corresponds to a dataset  and a loss . 

ℰtr ⊆ ℰall
e ∈ ℰ 𝒟e ℒe

min
f:𝒳→𝒴

max
e∈ℰall

ℒe( f )

Out-of-Distribution generalization

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021; Zhang et al., 2022)
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Previous works focus on OOD objectives

Previous works mostly focus on developing better optimization objectives:

Regularization via some OOD objective

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

min
f

LERM + λ ⋅ ̂LOOD
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Previous works mostly focus on developing better optimization objectives:

Regularization via some relaxed OOD objective

The Optimization Dilemma in OOD Generalization

         min
f=w∘φ ∑

e∈ℰtr

ℒe(w ∘ φ),

s.t. w ∈ arg min
w̄

ℒe(w̄ ∘ φ), ∀e ∈ ℰtr

IRM

         
min

φ ∑
e∈ℰtr

ℒe(φ) + λ∥∇w|w=1ℒe(w ⋅ φ)∥2

IRMv1

         min
φ ∑

e∈ℰtr

ℒe(φ),

s.t. ∇w|w=1ℒe(w ⋅ φ) = 0, ∀e ∈ ℰtr

IRM𝒮

w ∈ ℝdLinearized IRM with Soften the constraints

(Arjovsky et al., 2019; Kamath et al., 2021)

min
f

LERM + λ ⋅ ̂LOOD



The practical variants of IRM can have very different behaviors from the original IRM.

The ellipsoids are the solutions satisfying 

the invariant constraints in  IRM𝒮

∇w|w=1ℒe(w ⋅ φ) = 0, ∀e ∈ ℰtr

🥲 

The Optimization Dilemma in OOD Generalization

6 (Arjovsky et al., 2019; Kamath et al., 2021)

Illustration of IRMv1 failures
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Invariant Risk Minimization in practice

The practical variants of IRM can have very different behaviors from the original IRM.

 is yet preferred than f1 fIRM

🥲 

The ellipsoids are the solutions satisfying 

the invariant constraints in  IRM𝒮

∇w|w=1ℒe(w ⋅ φ) = 0, ∀e ∈ ℰtr

Illustration of IRMv1 failures

(Arjovsky et al., 2019; Kamath et al., 2021)
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Previous works mostly focus on developing better optimization objectives:

 is hard to tuneλ

The Optimization Dilemma in OOD Generalization

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

min
f

LERM + λ ⋅ ̂LOOD
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Previous works mostly focus on developing better optimization objectives:

 is hard to tuneλ

The Optimization Dilemma in OOD Generalization

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

min
f

LERM + λ ⋅ ̂LOOD

Gradient Conflicts generically exist between 

ERM and OOD objectives:

gERM gOOD
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The linear weight scheme

The Optimization Dilemma in OOD Generalization

(Boyd & Vandenberghe, 2014)

min
f

LERM + λ ⋅ ̂LOOD

The typically used linear weighting scheme cannot reach non-convex part of pareto front solutions
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 is too strong to learn the correlation;λ

The Optimization Dilemma in OOD Generalization

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

min
f

LERM + λ ⋅ ̂LOOD

Even the desired solution is reachable, the scheme requires exhaustive hyperparemter tuning: 

 is too weak to keep the invarianceλ
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 is hard to tuneλ

The Optimization Dilemma in OOD Generalization

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

Regularization via some relaxed OOD objective

min
f

LERM + λ ⋅ ̂LOOD

The usual optimization formula of OOD objectives in practice:


•  usually has a large gap from the original one;

•  is hard to tune, i.e., 


Some solutions are unreachable with linear weight scheme; 

Even reachable, it still requires exhaustive tuning efforts to find a proper ;

̂LOOD
λ

λ
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How to obtain a desired OOD solution
under the ERM and OOD conflicts?

As the traditional optimization scheme fails 
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From a Multi-Objective Optimization perspective…

min
f

LERM + λ ⋅ ̂LOOD

The optimization of IRM essentially handles the trade-off between

Capturing the statistical correlations Enforcing the invariance of learned correlations



15

From a Multi-Objective Optimization perspective…

The optimization of IRM essentially handles the trade-off between

Oh, it’s a Multi-Objective Optimization (MOO)!

min
f

{LERM, ̂LOOD}T

min
f

LERM + λ ⋅ ̂LOOD
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From a Multi-Objective Optimization perspective…

min
f=w⋅φ

{L1, L2}T

Assume we have the Multi-Objective Optimization (MOO) problem with 2 objectives:

Simulated Pareto front

• A solution   (with ) dominates    
(with ) if both  and ;


• Pareto optimal solutions are the set of 
solutions dominated by none;


• Their images form the Pareto front;

f {L1, L2}T f̄
{L̄1, L̄2}T L1 ≤ L̄1 L2 ≤ L̄2

(Kaisa, 1999)
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From a Multi-Objective Optimization perspective…

min
f=w⋅φ

{L1, L2, LIRM}T

Assume we have 2 training environments, a natural MOO formulation of IRMv1 is:

Simulated Pareto front
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From a Multi-Objective Optimization perspective…

Observation I: Merely minimizing any environment-reweighted ERM cannot locate the  ;
Observation II: …
Observation III: …

fIRM👉

Simulated Pareto front
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From a Multi-Objective Optimization perspective…

Observation I: Merely minimizing any environment-reweighted ERM cannot locate the  ;
Observation II: Incorporating the additional practical IRM penalty cannot locate the  ;
Observation III: …

fIRM
fIRM👉

Simulated Pareto front Illustration of IRMv1 failures
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From a Multi-Objective Optimization perspective…

Illustration of IRMv1 failures

Observation I: Merely minimizing any environment-reweighted ERM cannot locate the  ;
Observation II: Incorporating the additional practical IRM penalty cannot locate the  ;
Observation III: The failures of practical IRM variants is because of using bad objectives!

fIRM
fIRM

👉

Simulated Pareto front
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Robustify MOO objectives

IRM can extrapolate stationary points of negative combinations of training environments:


{ ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1,λe ≥ 0,∀e} { ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1, λe ≤ 0, ∀e}

(Arjovsky et al., 2019; Bottou et al., 2019; Krueger et al., 2021)
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We can introduce additional guidance that directly enforces extrapolation at certain region.


{ ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1,λe ≥ 0,∀e} { ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1, λe ≤ 0, ∀e} { ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1,λe ≤ − β, ∀e}

👉 This brings us a new MOO objectives, IRMX:    min
f=w⋅φ

{L1, L2, LIRM, LREx}T

Robustify MOO objectives
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PAIR: PAreto Invariant Risk minimization

😋

Theoretical results (Informal):
IRMX solves the IRMv1 failures under any environment settings in (Kamath et al., 2021). 

A PAIRed journey into the adventure of extrapolation:    min
f=w⋅φ

{LERM, LIRM, LREx}T
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PAIR: PAreto Invariant Risk minimization

A PAIRed journey into the adventure of extrapolation:    min
f=w⋅φ

{LERM, LIRM, LREx}T
😋

Theoretical results (Informal):
IRMX solves the IRMv1 failures under any environment settings in (Kamath et al., 2021). 

IRMX raises more challenges in hp. tuning!
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PAIR: PAreto Invariant Risk minimization

IRMX raises more challenges in the optimization:


• The Pareto frontier becomes more complicated: 


min
f=w⋅φ

{LERM, LIRM, LREx}T
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PAIR: PAreto Invariant Risk minimization

IRMX raises more challenges in the optimization:


• The Pareto frontier becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


e.g., MGDA algorithms (Désidéri, 2012)

min
f=w⋅φ

{LERM, LIRM, LREx}T
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PAIR: PAreto Invariant Risk minimization

IRMX raises more challenges in the optimization:


• The Pareto frontier becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


• There can be multiple Pareto optimal solutions: 


min
f=w⋅φ

{LERM, LIRM, LREx}T
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PAIR: PAreto Invariant Risk minimization

min
f=w⋅φ

{LERM, LIRM, LREx}T

IRMX raises more challenges in the optimization:


• The Pareto frontier becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


• There can be multiple Pareto optimal solutions: 

✓ A preference of each objective is required! 


Exact Pareto Optimality:
Given a preference  for each objective, a solution  
satisfies Exact Pareto Optimality iff. .

p = {pERM, pIRM, pREx}T ̂L = { ̂LERM, ̂L IRM, ̂LREx}T

pERM ̂LERM = pIRM ̂L IRM = pREx ̂LREx
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PAIR: PAreto Invariant Risk minimization

min
f=w⋅φ

{LERM, LIRM, LREx}T

IRMX raises more challenges in the optimization:


• The Pareto frontier becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


• There can be multiple Pareto optimal solutions: 

✓ A preference of each objective is required! PAIR-o as the OOD optimizer;


Exact Pareto optimal search

(Mahapatra & Rajan 2020)

Theoretical results (Informal):
Under mild assumptions, let   be the desired OOD solution w.r.t. an underlying preference , PAIR-o 
converges and approximates to  for any approximated . 

fOOD pOOD
fOOD ̂pOOD
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PAIR: PAreto Invariant Risk minimization

min
f=w⋅φ

{LERM, LIRM, LREx}T

IRMX raises more challenges in the optimization:


• The Pareto frontier becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


• There can be multiple Pareto optimal solutions: 

✓ A preference of each objective is required! PAIR-o as the OOD optimizer;

✓ It also motivates a new model selection criteria, by selecting models that 

maximally satisfy the Exact Pareto Optimality! PAIR-s as the OOD model selector;

Exact Pareto optimal search

(Gulrajani & Lopez-Paz, 2021)
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Causal Invariance Recovery Tests

Ground Truth ERM IRMv1

VREx IRMX PAIR

Regression target:

, only 

depends on the x-axis;


Training envs:

Two elliptical regions 
(Gaussian distributions) 
marked in red; 


Invariance:

The overlapped x-axis 

region, i.e., .

Y = sin(X1) + 1

[−2,2]
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Proof-of-Concept Experiments

( Arjovsky et al., 2019; Zhang et al., 2022)
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PAIR as the optimizer

PAIR re-empowers IRMv1 and achieves new state-of-the-arts across 6 challenging realistic datasets.
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PAIR as the model selector

PAIR-s substantially improves the worst environment performance of all representative OOD methods up to 10%.
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How PAIR mitigates the optimization dilemma

(a) PAIR v.s. IRMX (b) Optimization trajectory (d) Preference sensitivity(c) Normalized losses

(a). PAIR alleviates the exhaustive parameter tuning efforts;

(b), (c). PAIR adaptively tunes the penalty weights towards better OOD solutions;

(d). PAIR is also robust to preference choices; 



Summary

We provided a new understanding of the optimization dilemma in OOD generalization 
from the Multi-Objective Optimization perspective.

We attributed the failures of OOD optimization to the compromised robustness of 
relaxed OOD objectives and the unreliable optimization scheme.

We highlighted the importance of trading-off the ERM and OOD objectives and 
proposed a new optimization scheme PAIR to mitigate the dilemma.

Contact: yqchen@cse.cuhk.edu.hk 

Thank you!
Paper Code 

mailto:yqchen@cse.cuhk.edu.hk

