

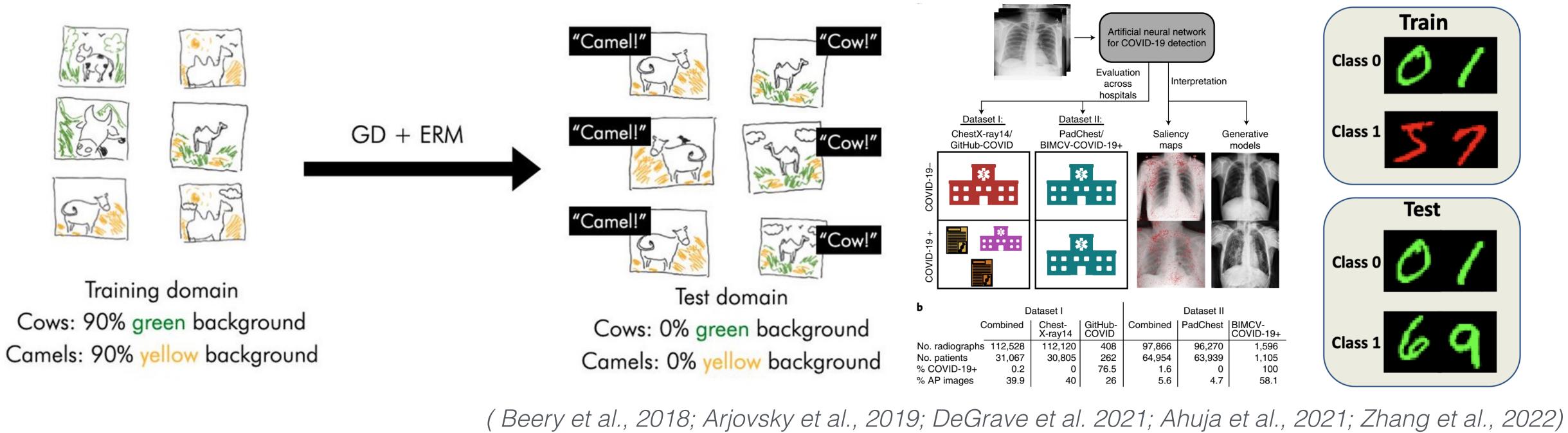
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in OOD Generalization

Yongqiang Chen CUHK & Tencent AI Lab

with Kaiwen Zhou, Yatao Bian, Binghui Xie, Bingzhe Wu, Peilin Zhao, Bo Han, James Cheng and others.



Out-of-Distribution generalization

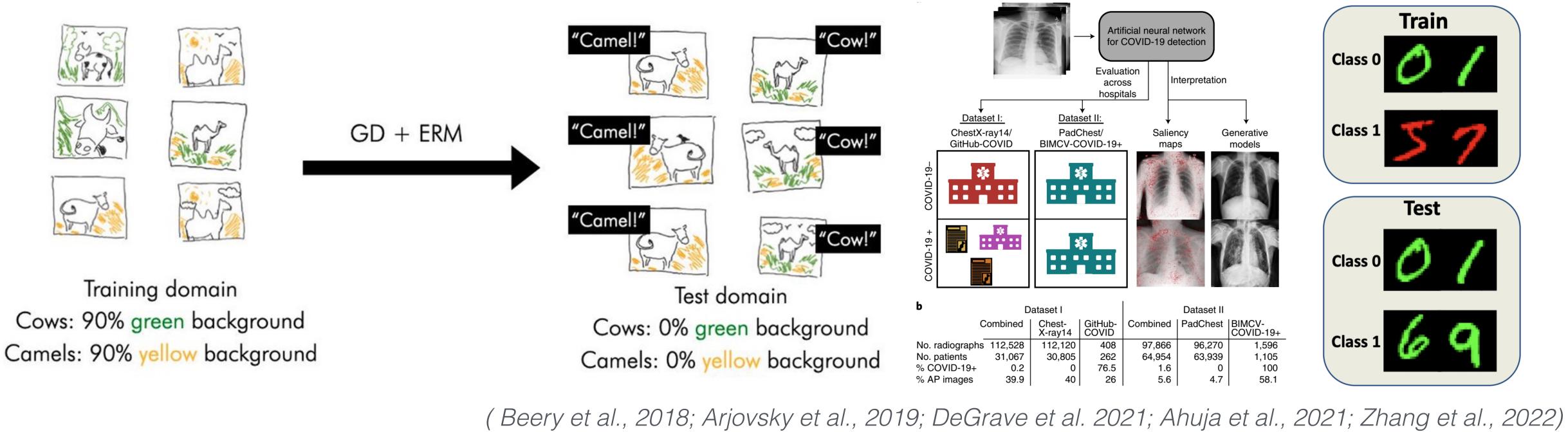


Models learned with Empirical Risk Minimization (ERM) are often:

- prone to **spurious correlations**

- can hardly generalize to **OOD** data

Out-of-Distribution generalization



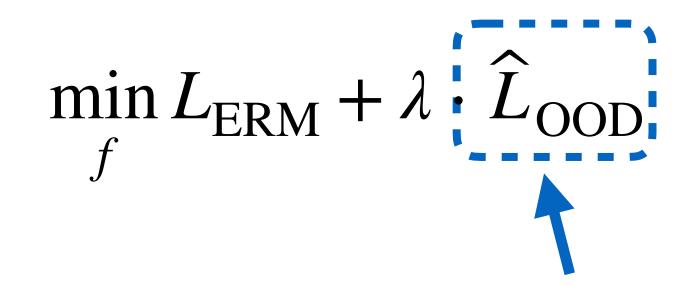
The goal of OOD generalization:

 $\min_{f:\mathcal{X} \to \mathcal{Y}} \max_{e \in \mathscr{E}_{all}} \mathscr{L}_e(f)$ given a subset of training **environments**/domains $\mathscr{C}_{tr} \subseteq \mathscr{C}_{all}$, where each $e \in \mathscr{E}$ corresponds to a dataset \mathscr{D}_{ρ} and a loss \mathscr{L}_{ρ} .

Previous works focus on OOD objectives

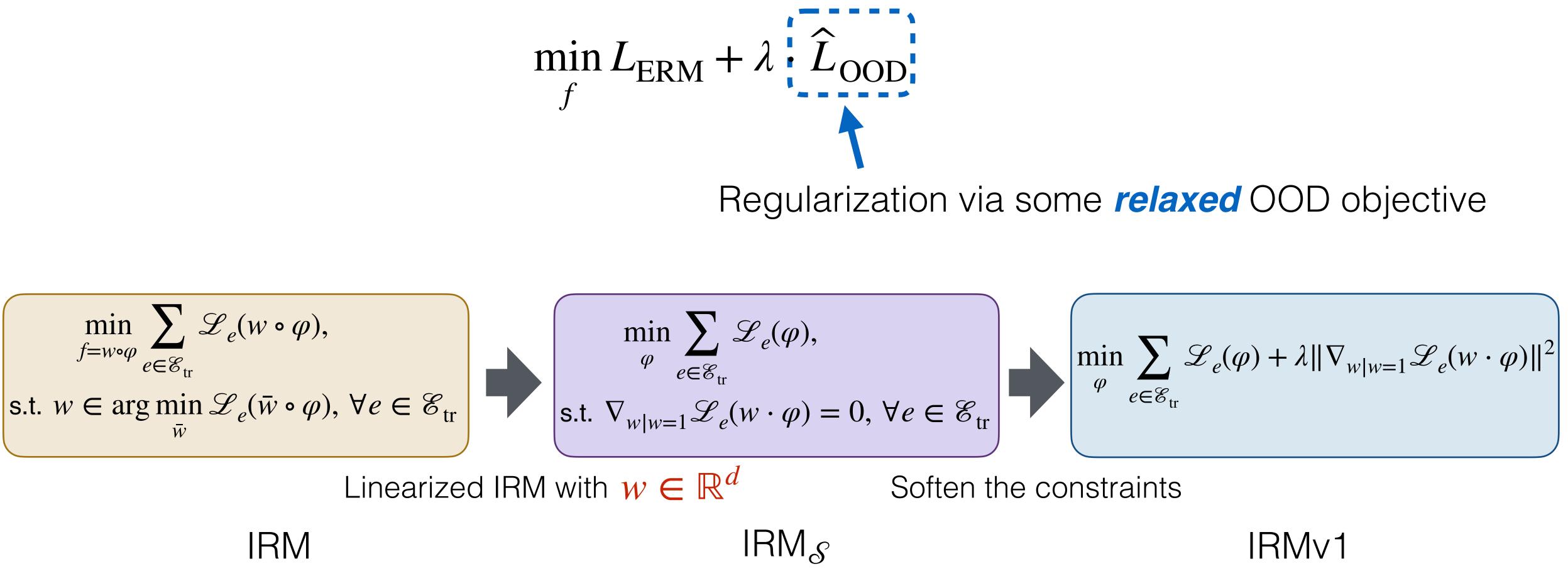
Previous works mostly focus on developing better *optimization objectives*:

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)



Regularization via some OOD objective

Previous works mostly focus on developing better *optimization objectives*:



(Arjovsky et al., 2019; Kamath et al., 2021)

The practical variants of IRM can have very different behaviors from the original IRM.

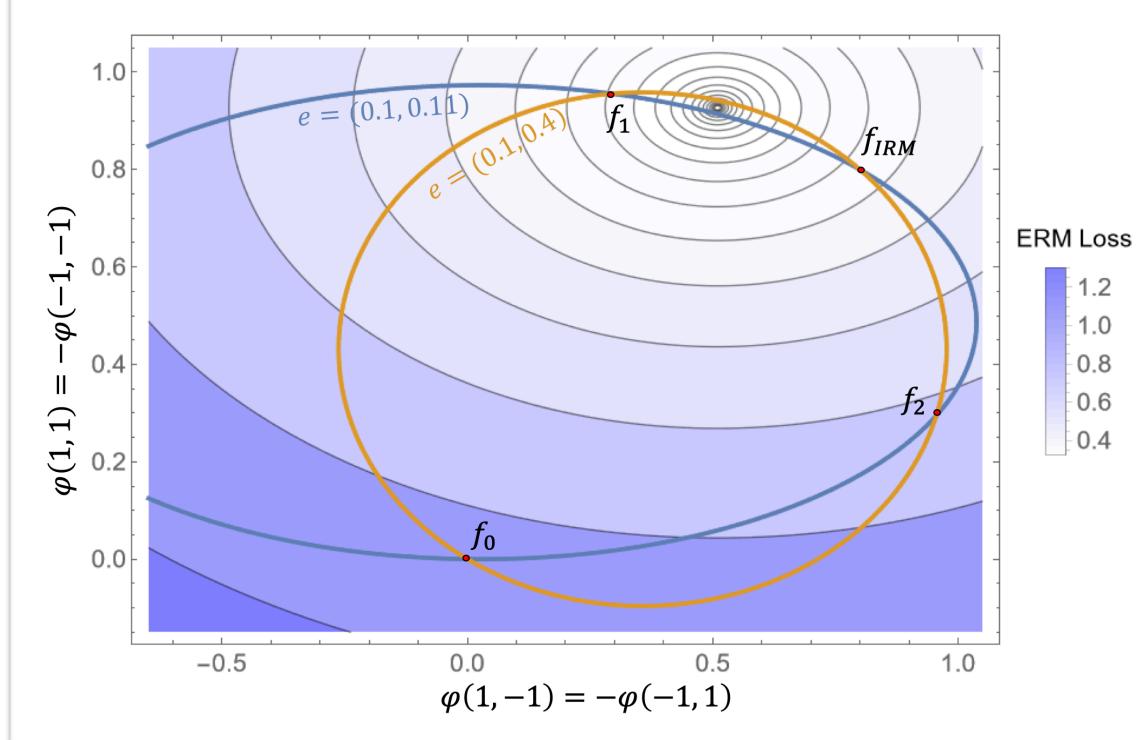


Illustration of IRMv1 failures

1.2

1.0

0.8

0.6

0.4

The ellipsoids are the solutions satisfying the **invariant constraints** in IRM_S

$$\nabla_{w|w=1}\mathscr{L}_e(w\cdot\varphi)=0,\,\forall e\in\mathscr{E}_{\mathrm{tr}}$$

(Arjovsky et al., 2019; Kamath et al., 2021)

Invariant Risk Minimization in practice

The practical variants of IRM can have very different behaviors from the original IRM.

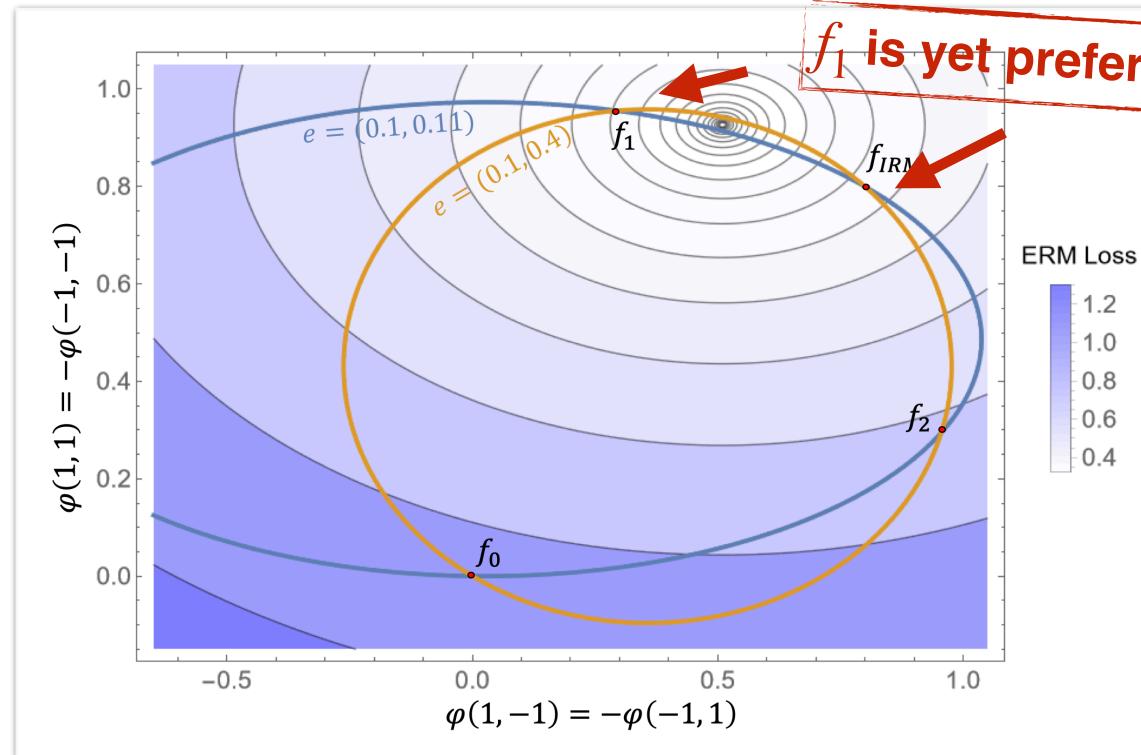


Illustration of IRMv1 failures

is yet preferred than $f_{\rm IRM}$

1.2

0.8

0.6

0.4

The ellipsoids are the solutions satisfying the invariant constraints in IRM_S

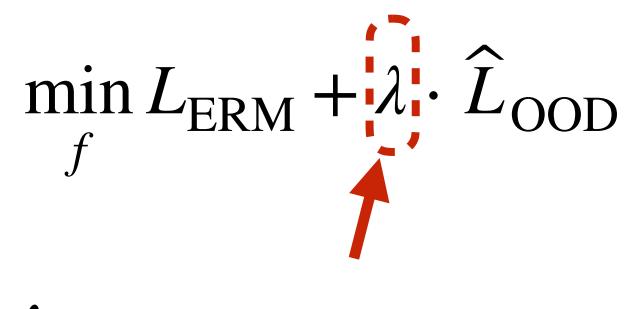
$$\nabla_{w|w=1}\mathscr{L}_e(w\cdot\varphi)=0,\,\forall e\in\mathscr{E}_{\mathrm{tr}}$$

(Arjovsky et al., 2019; Kamath et al., 2021)

Previous works mostly focus on developing better *optimization objectives*:

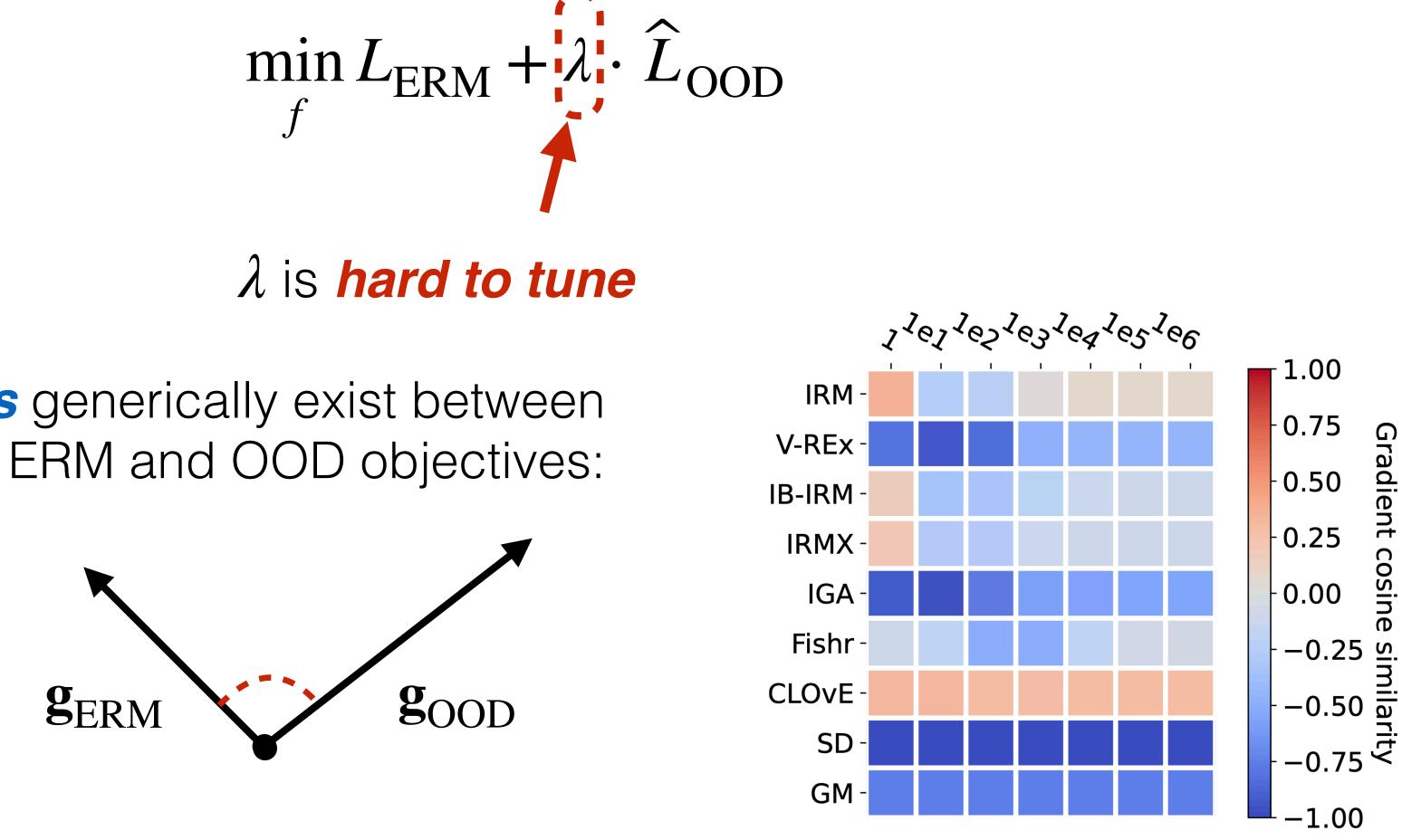
 λ is **hard to tune**

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)



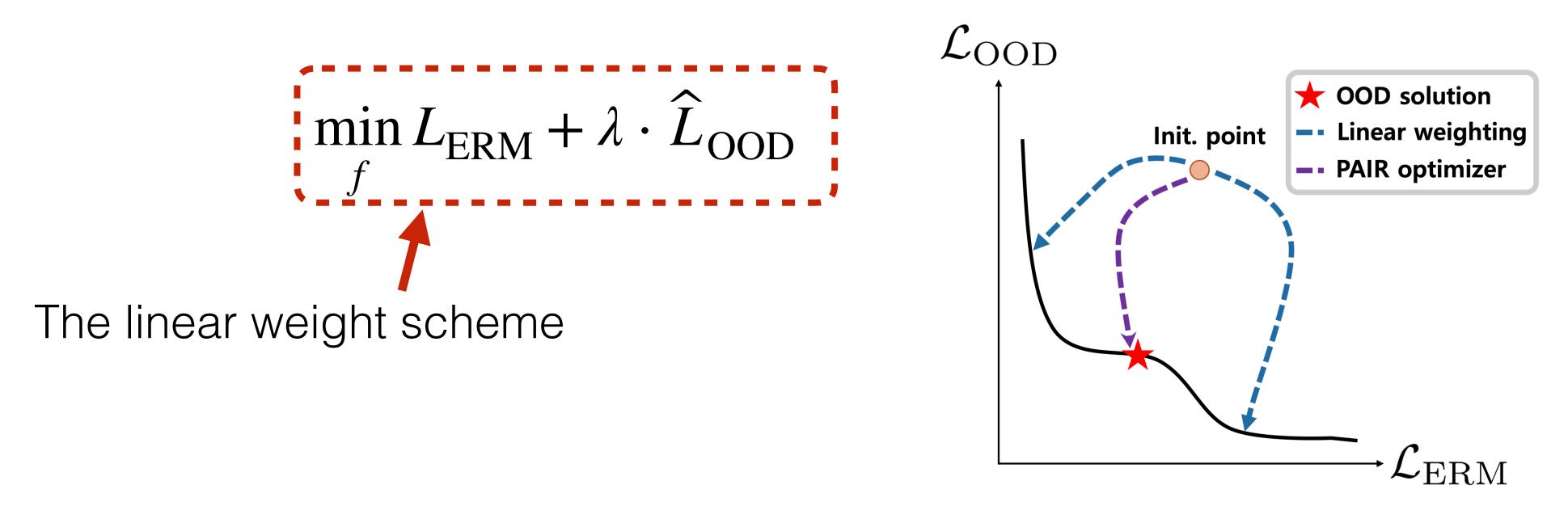
Previous works mostly focus on developing better *optimization objectives*:

Gradient Conflicts generically exist between



(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

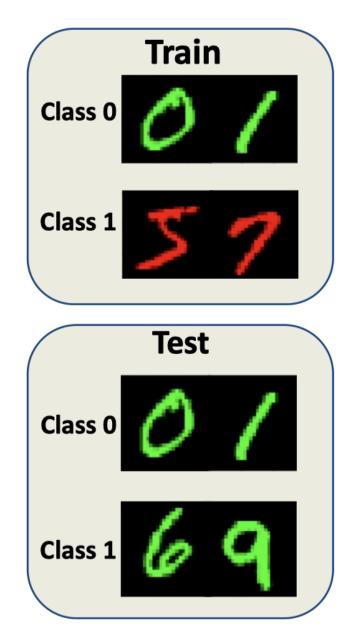
The typically used linear weighting scheme cannot reach non-convex part of pareto front solutions

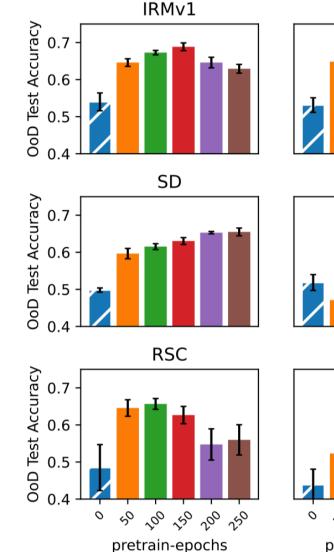


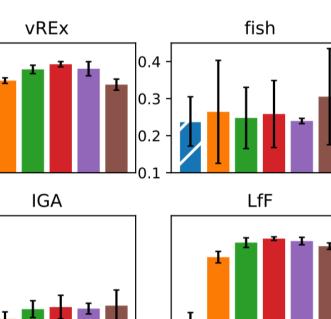
(Boyd & Vandenberghe, 2014)

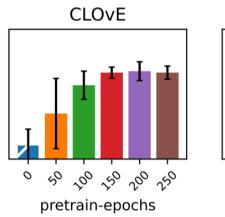
Even the desired solution is reachable, the scheme requires *exhaustive hyperparemter tuning*:

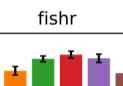
 $\min_{f} L_{\text{ERM}} + \lambda \cdot \hat{L}_{\text{OOD}}$

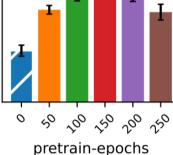






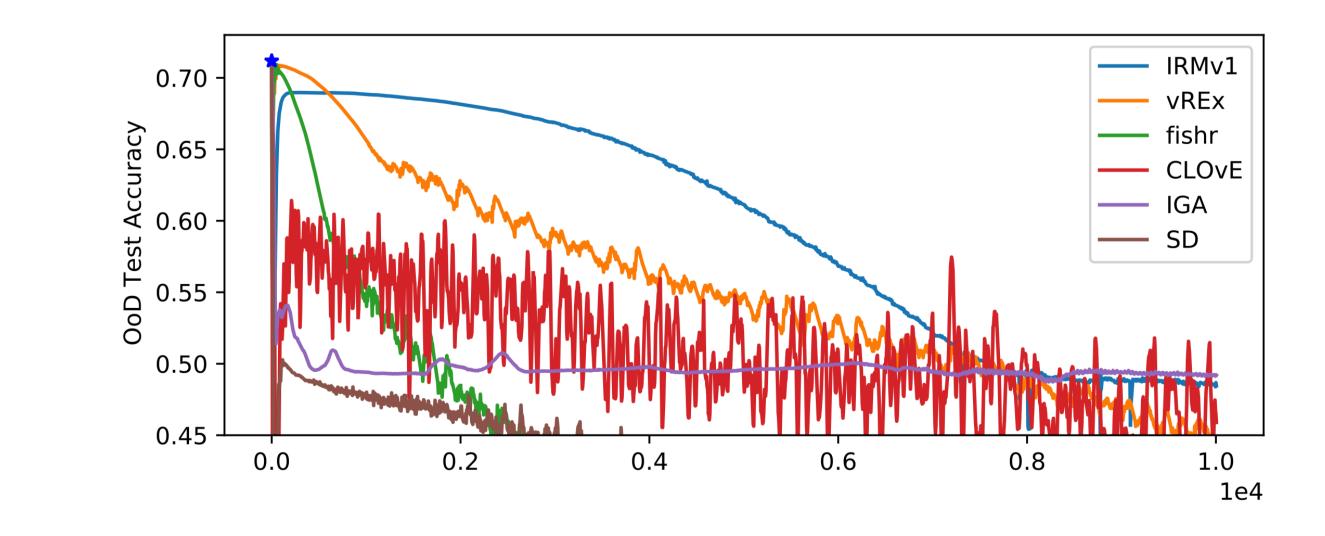






(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

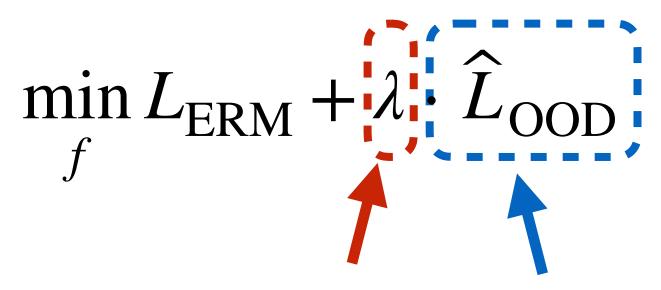
 λ is **too strong** to learn the correlation; λ is **too weak** to keep the invariance



The usual optimization formula of OOD objectives in practice:

- \widehat{L}_{OOD} usually has *a large gap* from the original one;
- λ is **hard to tune**, i.e.,
 - Some solutions are unreachable with linear weight scheme;

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

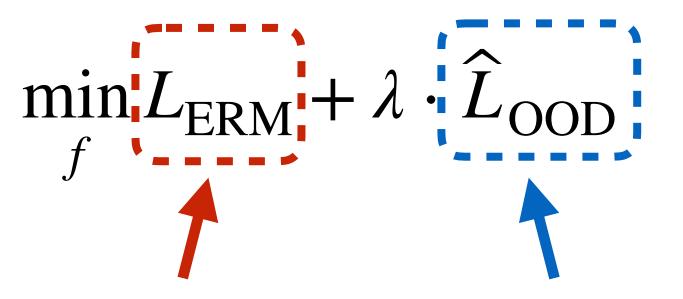


 λ is **hard to tune** Regularization via some **relaxed** OOD objective

Even reachable, it still requires exhaustive tuning efforts to find a proper λ ;

As the traditional optimization scheme fails How to obtain a desired OOD solution under the ERM and OOD conflicts?

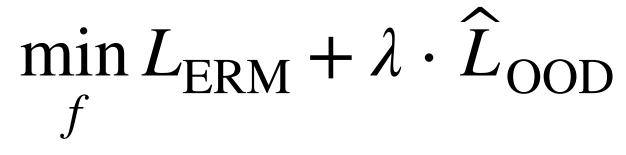
The optimization of IRM essentially handles the trade-off between

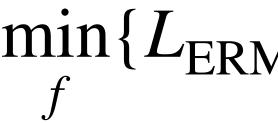


Capturing the statistical correlations

s Enforcing the invariance of learned correlations

The optimization of IRM essentially handles the *trade-off* between



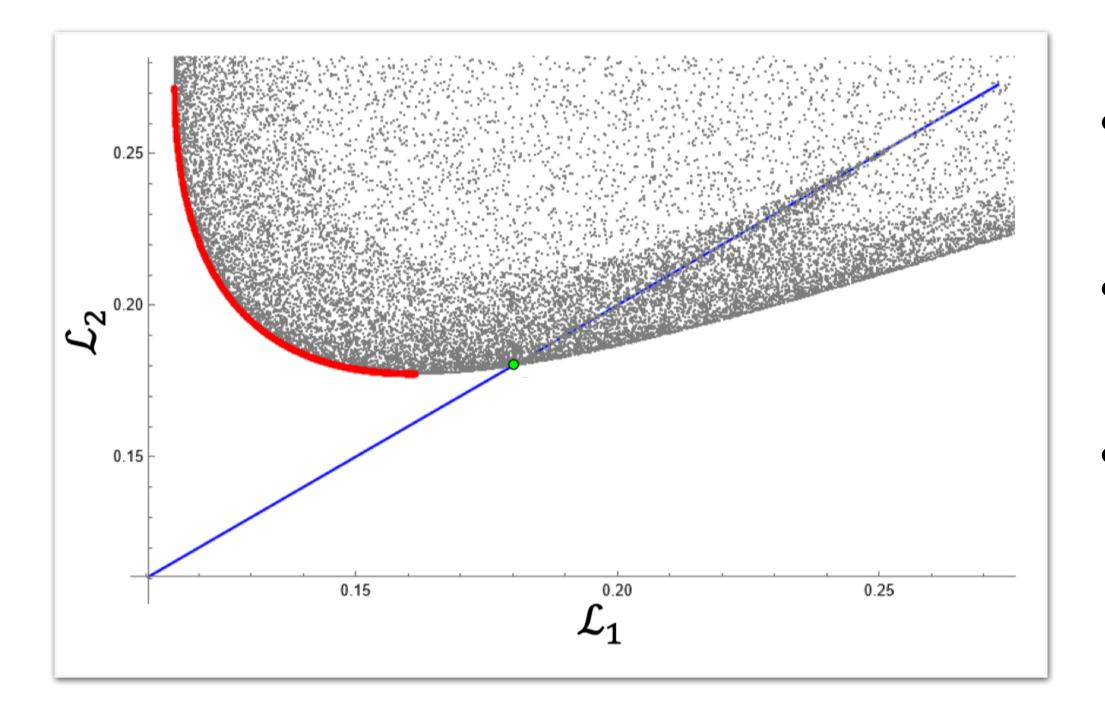


Oh, it's a Multi-Objective Optimization (MOO)!

 $\min_{f} \{L_{\text{ERM}}, \hat{L}_{\text{OOD}}\}^T$

Assume we have the Multi-Objective Optimization (MOO) problem with 2 objectives:

$\min_{f=w\cdot\varphi} \{L_1, L_2\}^T$

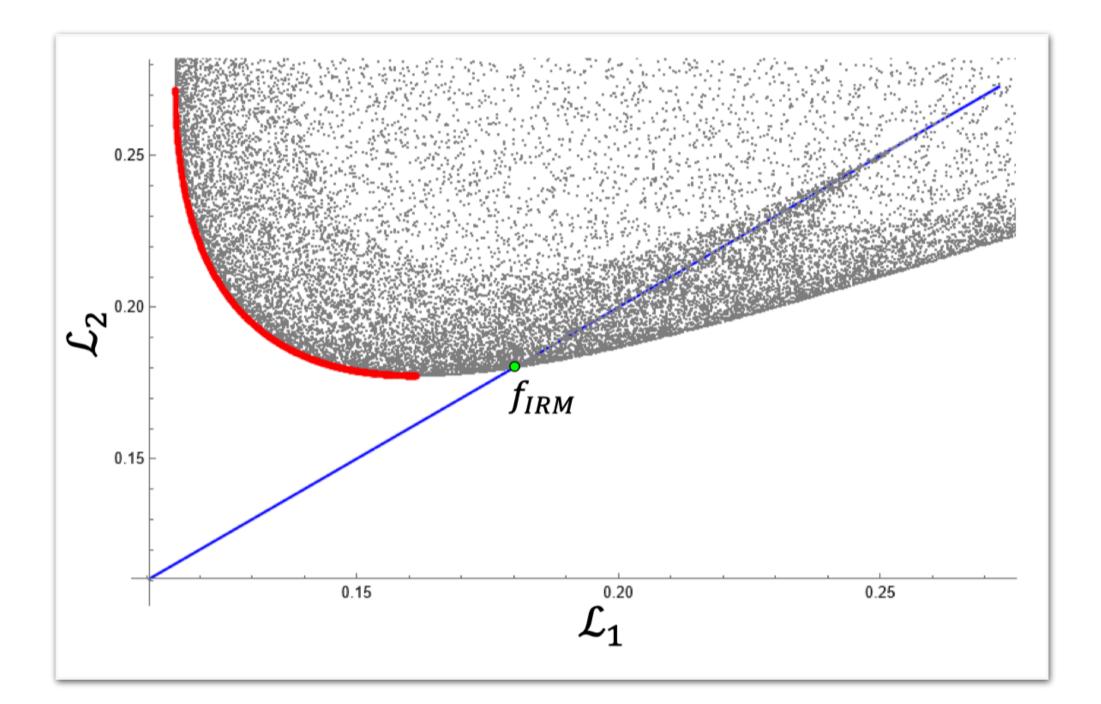


Simulated Pareto front

• A solution f (with $\{L_1, L_2\}^T$) dominates \bar{f} (with $\{\bar{L}_1, \bar{L}_2\}^T$) if both $L_1 \leq \bar{L}_1$ and $L_2 \leq \bar{L}_2$; • Pareto optimal solutions are the set of solutions dominated by none; • Their images form the **Pareto front**;

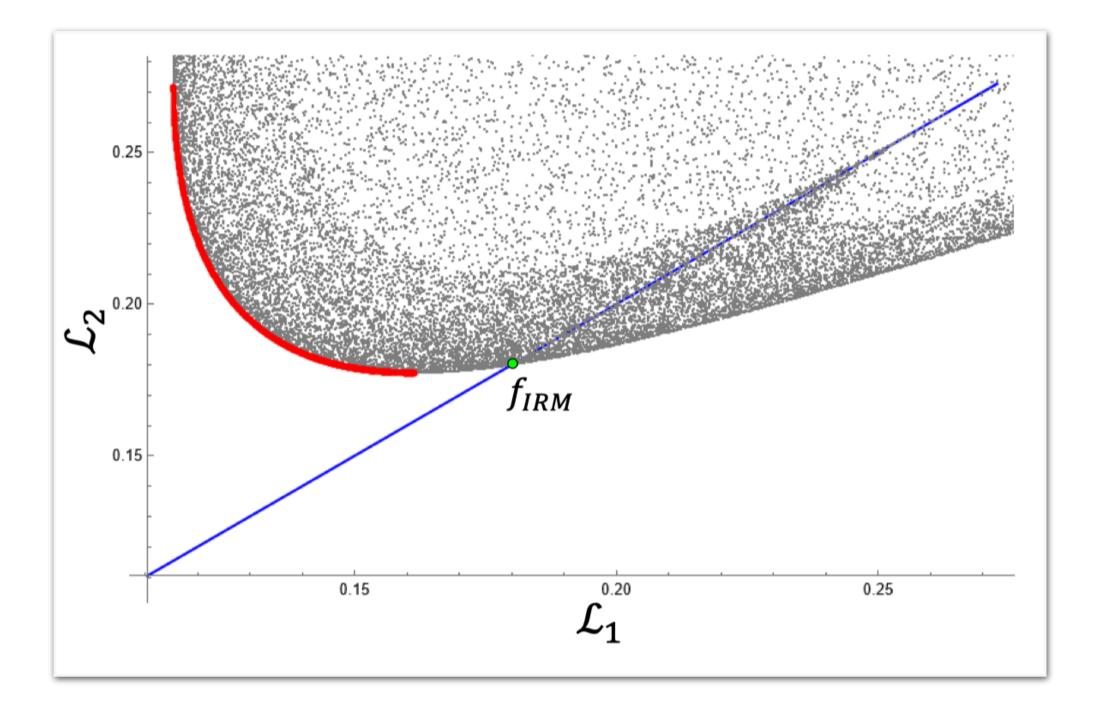
Assume we have 2 training environments, a natural MOO formulation of IRMv1 is:

 $\min_{f=w\cdot\varphi} \{L_1, L_2, L_{\text{IRM}}\}^T$



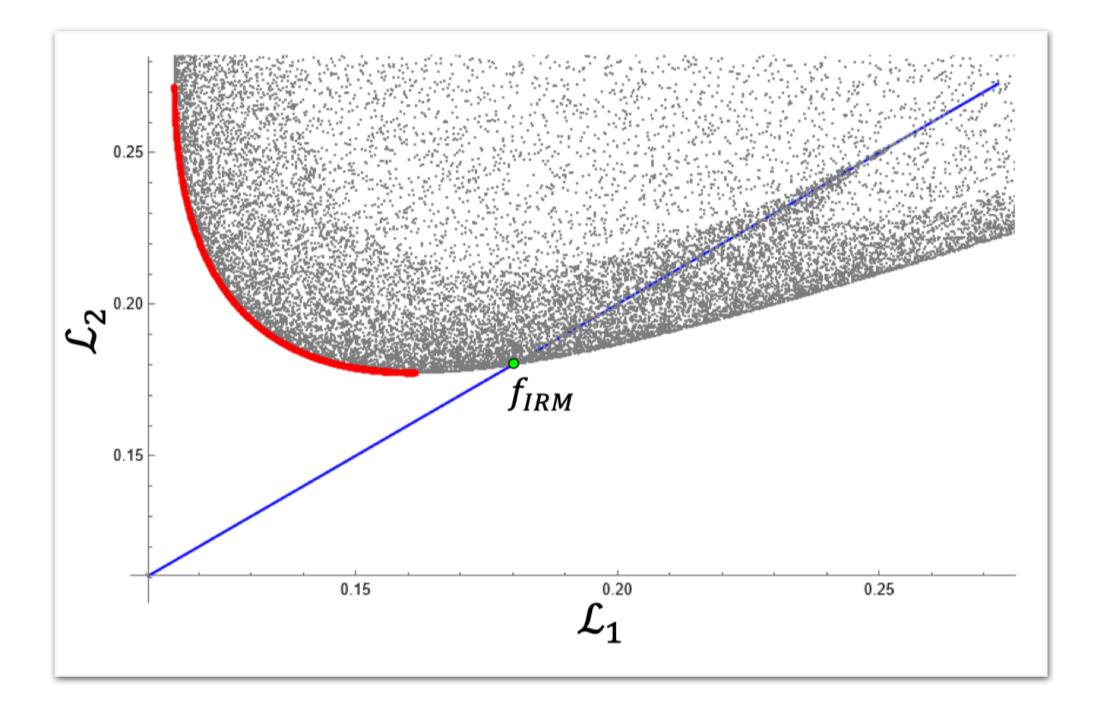
Simulated Pareto front

Observation I: Merely minimizing any environment-reweighted ERM cannot locate the *f*_{IRM};
 Observation II: ...
 Observation III: ...



Simulated Pareto front

Observation I: Merely minimizing any environment-reweighted ERM cannot locate the $f_{\rm IRM}$; Observation II: Incorporating the additional practical IRM penalty cannot locate the $f_{\rm IRM}$; Observation III: ...



Simulated Pareto front

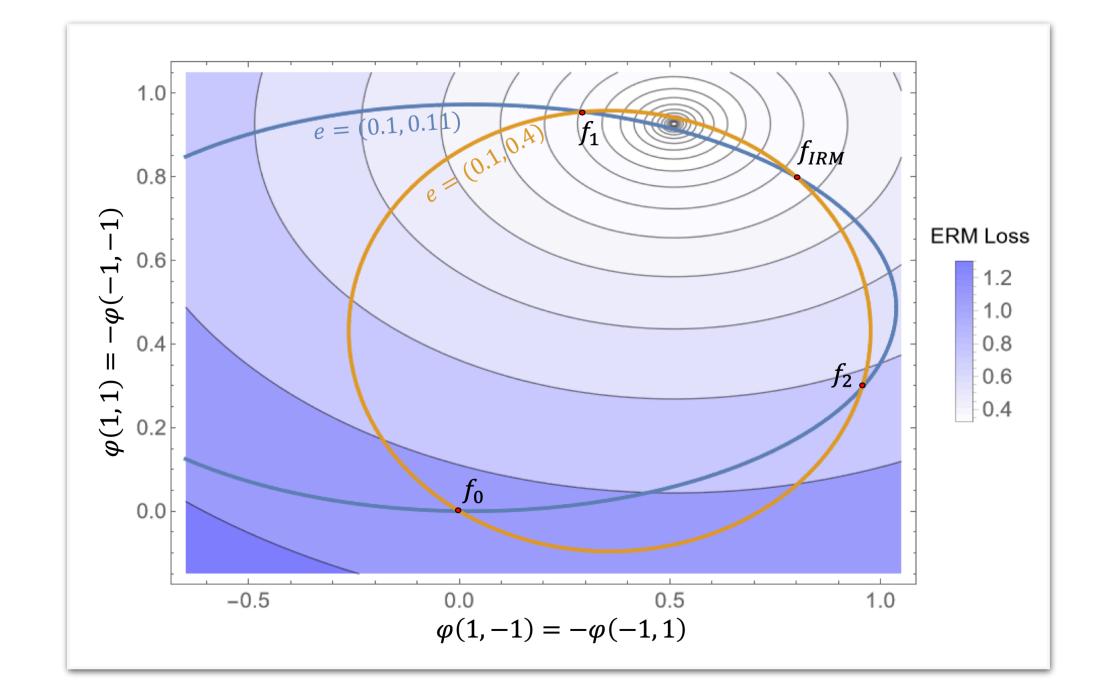
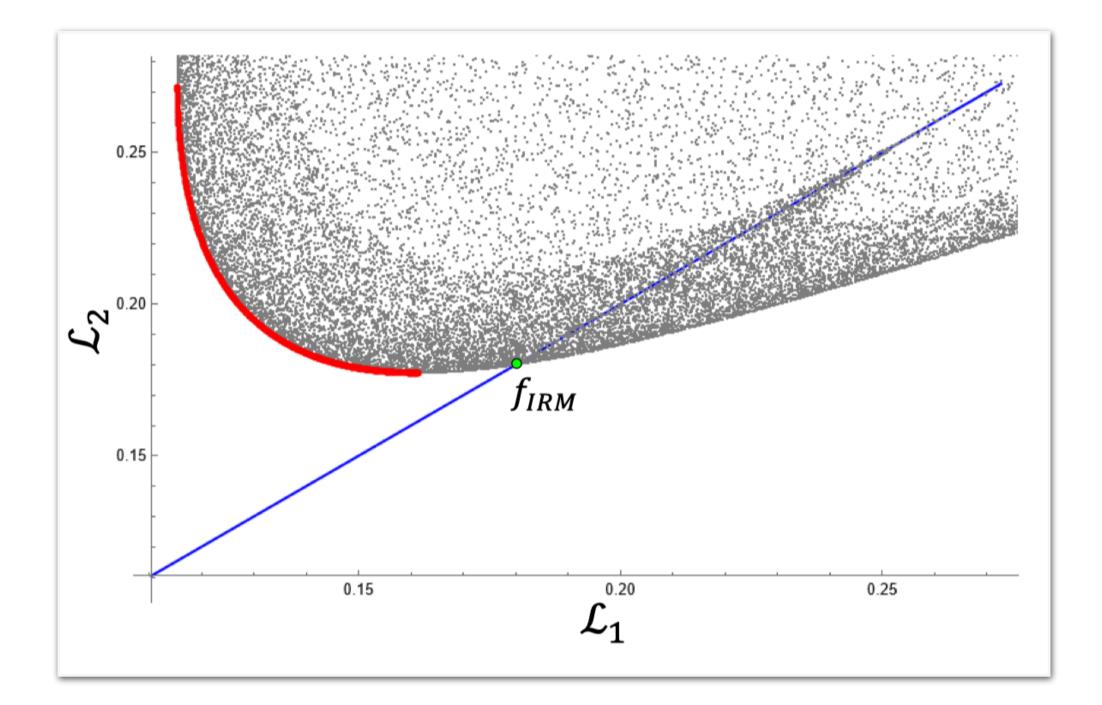


Illustration of IRMv1 failures

Observation I: Merely minimizing any environment-reweighted ERM cannot locate the f_{IRM} ; Observation II: Incorporating the additional practical IRM penalty cannot locate the f_{IRM} ; Observation III: The failures of practical IRM variants is because of using bad objectives!



Simulated Pareto front

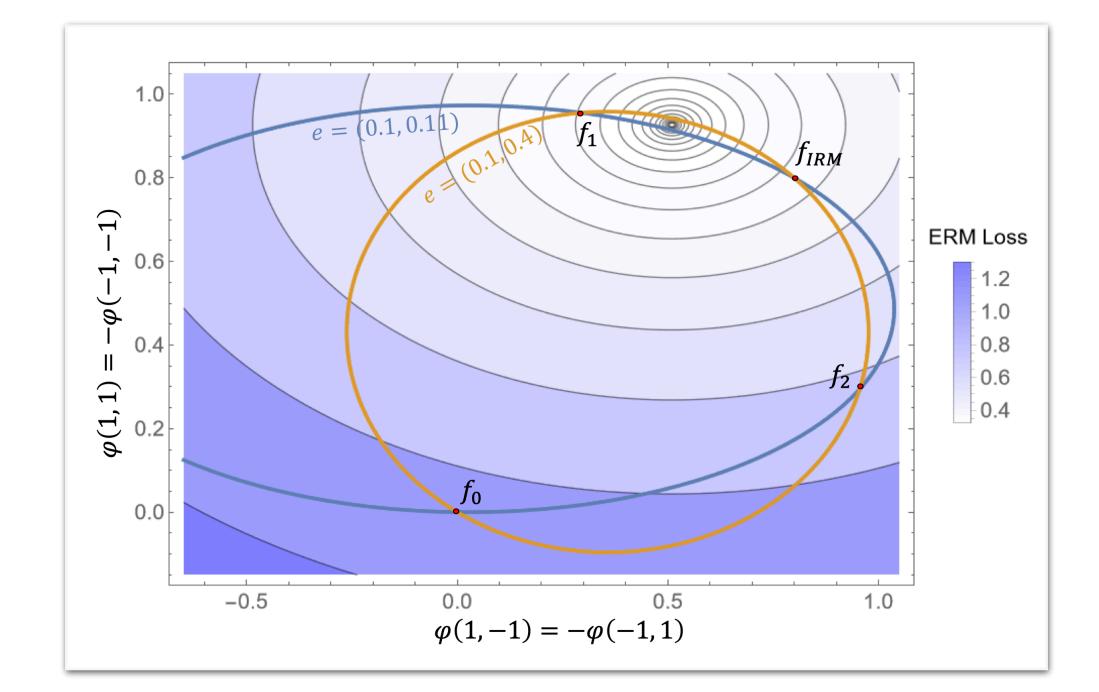
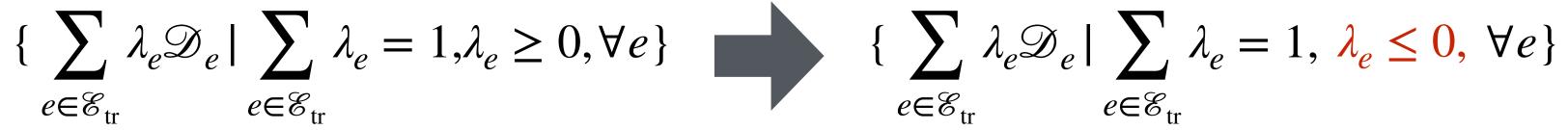


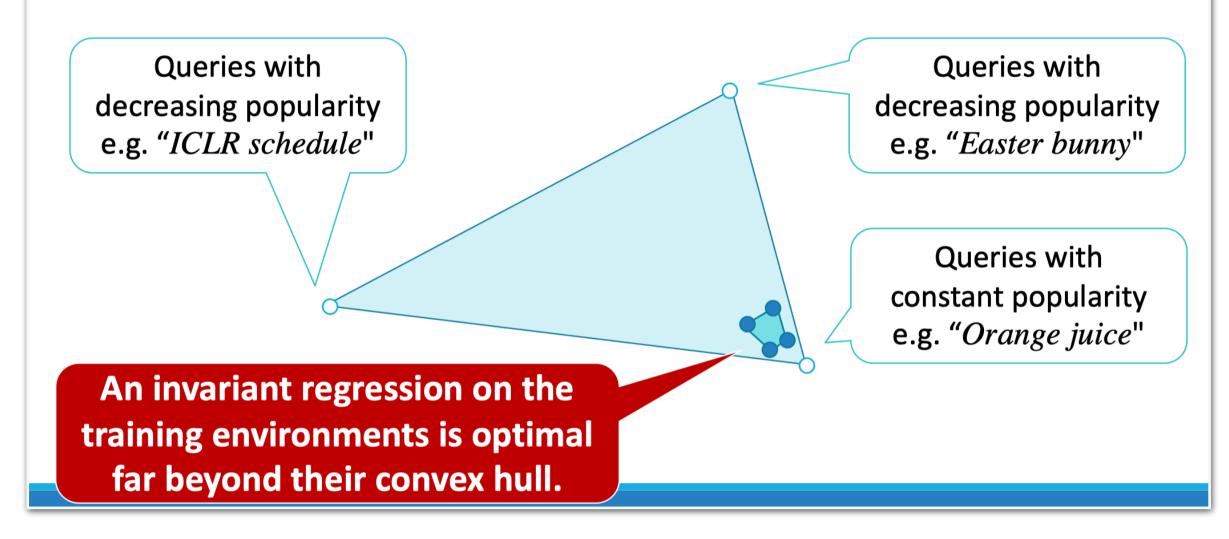
Illustration of IRMv1 failures

Robustify MOO objectives

IRM can extrapolate stationary points of negative combinations of training environments:

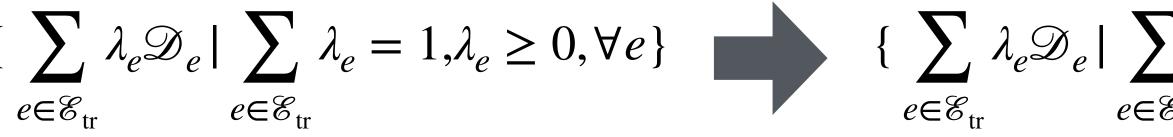


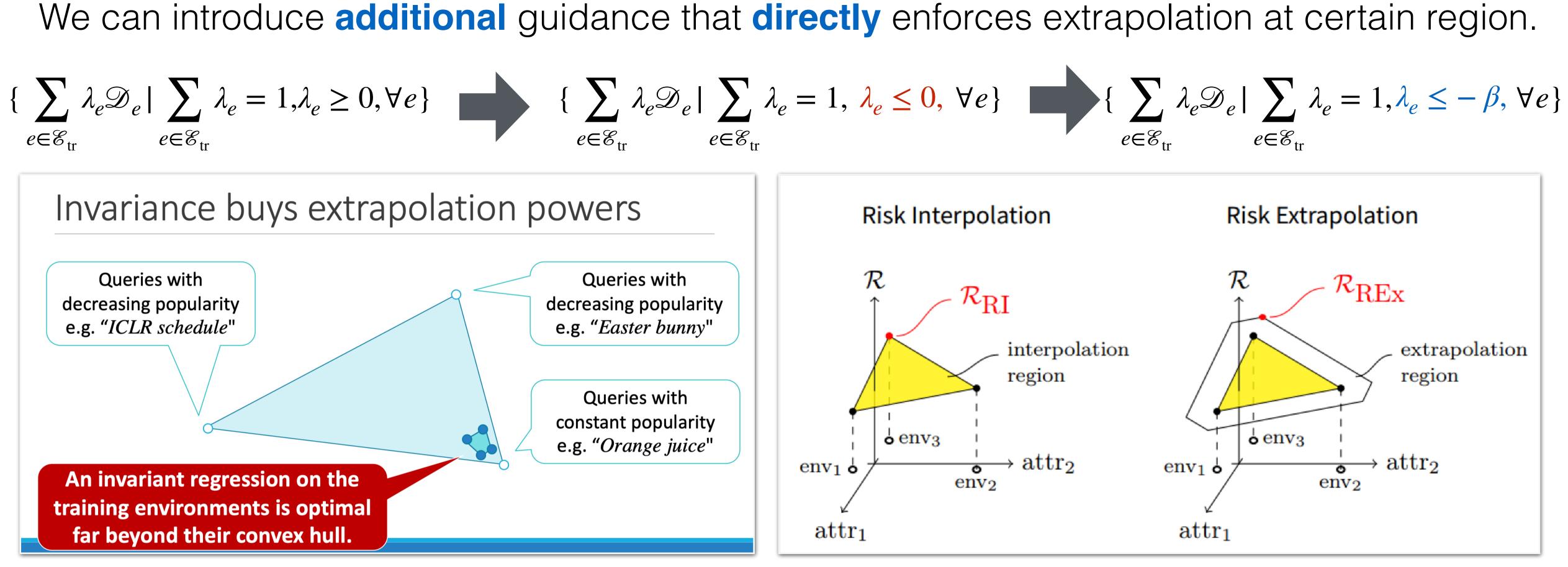
Invariance buys extrapolation powers



(Arjovsky et al., 2019; Bottou et al., 2019; Krueger et al., 2021)

Robustify MOO objectives



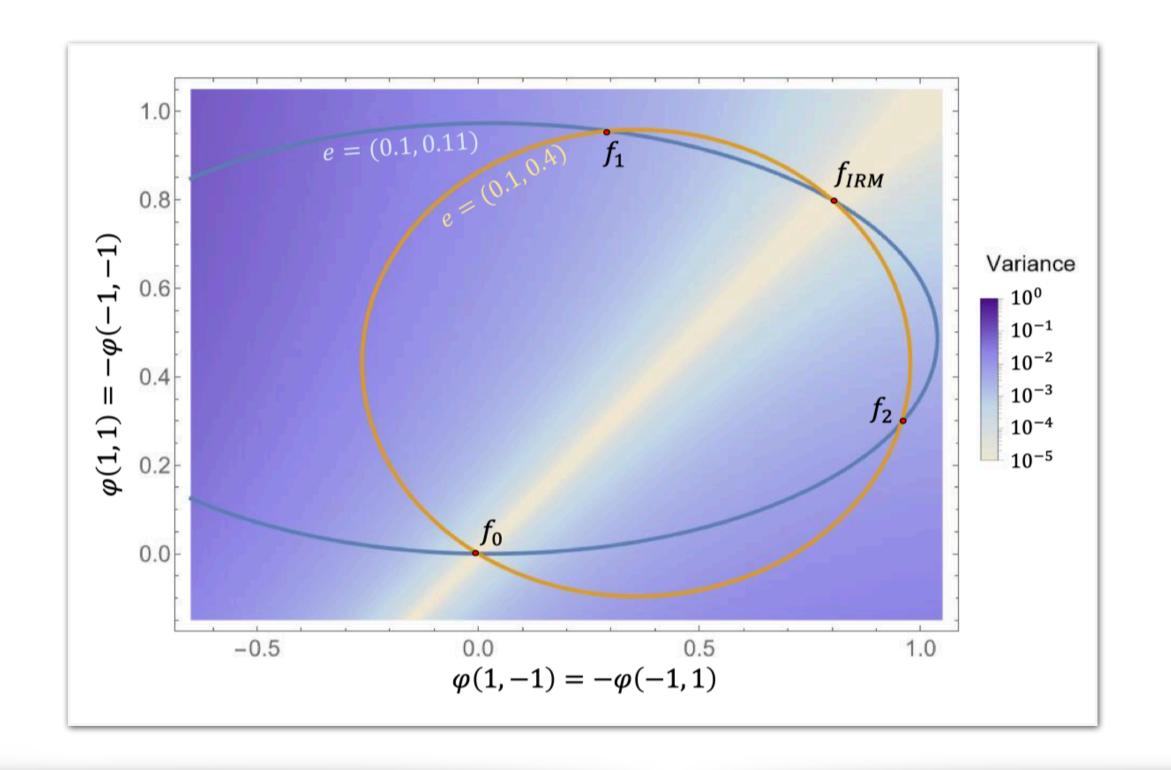


This brings us a new MOO objectives

s, IRMX:
$$\min_{f=w \cdot \varphi} \{L_1, L_2, L_{\text{IRM}}, L_{\text{REx}}\}^T$$

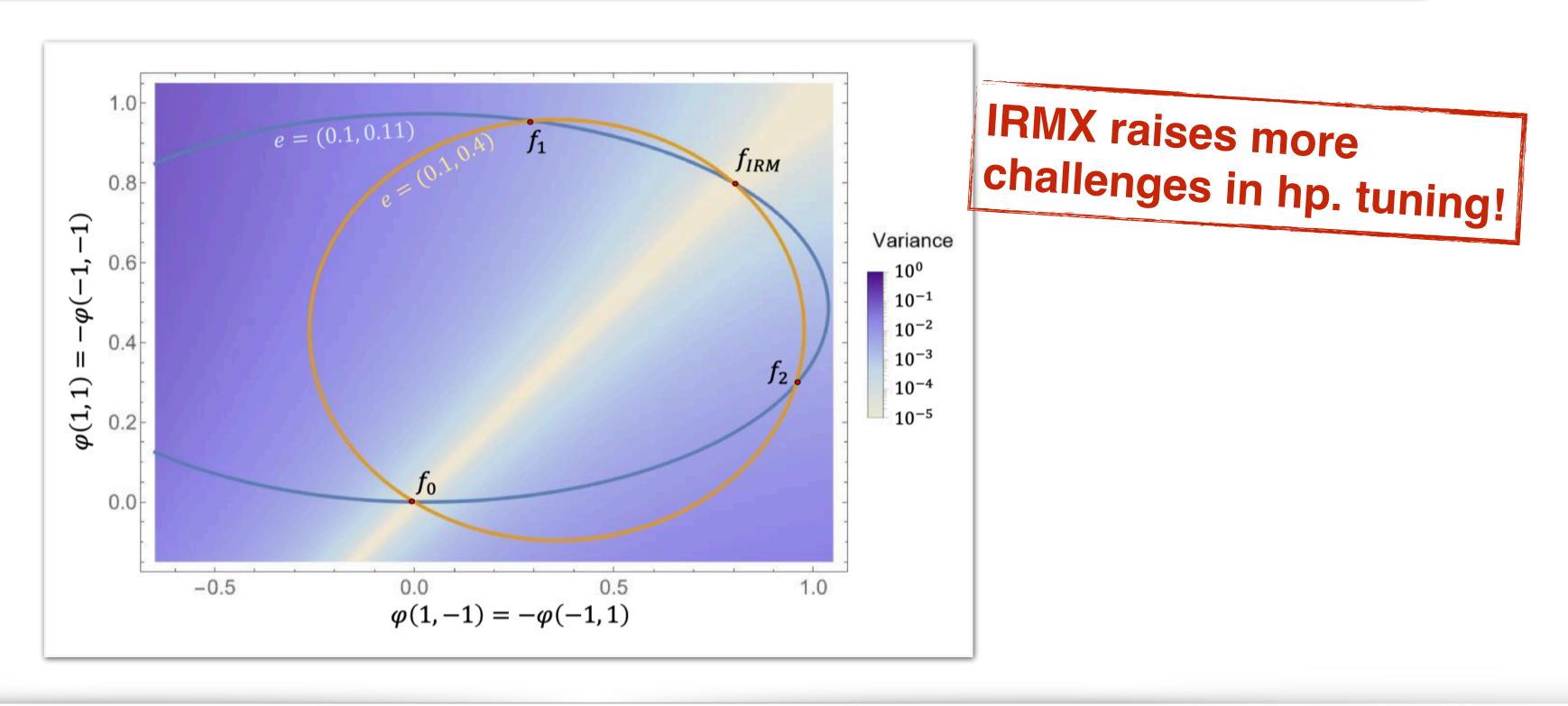
(Arjovsky et al., 2019; Bottou et al., 2019; Krueger et al., 2021)

A PAIRed journey into the adventure of extrapolation: $\min_{f=w\cdot\varphi} \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REX}}\}^T$



Theoretical results (Informal): IRMX solves the IRMv1 failures under any environment settings in (Kamath et al., 2021).

A PAIRed journey into the adventure of extrapolation: $\min_{f=w \cdot \varphi} \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REX}}\}^T$



Theoretical results (Informal): IRMX solves the IRMv1 failures under any environment settings in (Kamath et al., 2021).

IRMX raises more challenges in the optimization:

 $\min_{f=w \cdot \varphi} \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REx}}\}^T$

• The Pareto frontier becomes **more complicated**:

IRMX raises more challenges in the optimization:

 $\min_{f=w \cdot \varphi} \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REx}}\}^T$

• The Pareto frontier becomes **more complicated**: If the optimizer needs to be able to reach any Pareto optimal solutions!

e.g., MGDA algorithms (Désidéri, 2012)

IRMX raises more challenges in the optimization:

 $\min_{f=w \cdot \varphi} \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REX}}\}^T$

- The Pareto frontier becomes **more complicated**:
- If the optimizer needs to be able to reach any Pareto optimal solutions! • There can be **multiple** Pareto optimal solutions:

IRMX raises more challenges in the optimization:

 $\min \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REx}}\}^T$ $f = w \cdot \phi$

- The Pareto frontier becomes **more complicated**: If the optimizer needs to be able to reach any Pareto optimal solutions!
- There can be **multiple** Pareto optimal solutions: ✓ A preference of each objective is required!

Exact Pareto Optimality:

Given a preference $\mathbf{p} = \{p_{\text{ERM}}, p_{\text{IRM}}, p_{\text{REx}}\}^T$ for each objective, a solution $\widehat{\mathbf{L}} = \{\widehat{L}_{\text{ERM}}, \widehat{L}_{\text{IRM}}, \widehat{L}_{\text{REx}}\}^T$ satisfies Exact Pareto Optimality iff. $p_{\text{ERM}}\widehat{L}_{\text{ERM}} = p_{\text{IRM}}\widehat{L}_{\text{IRM}} = p_{\text{REx}}\widehat{L}_{\text{REx}}$.

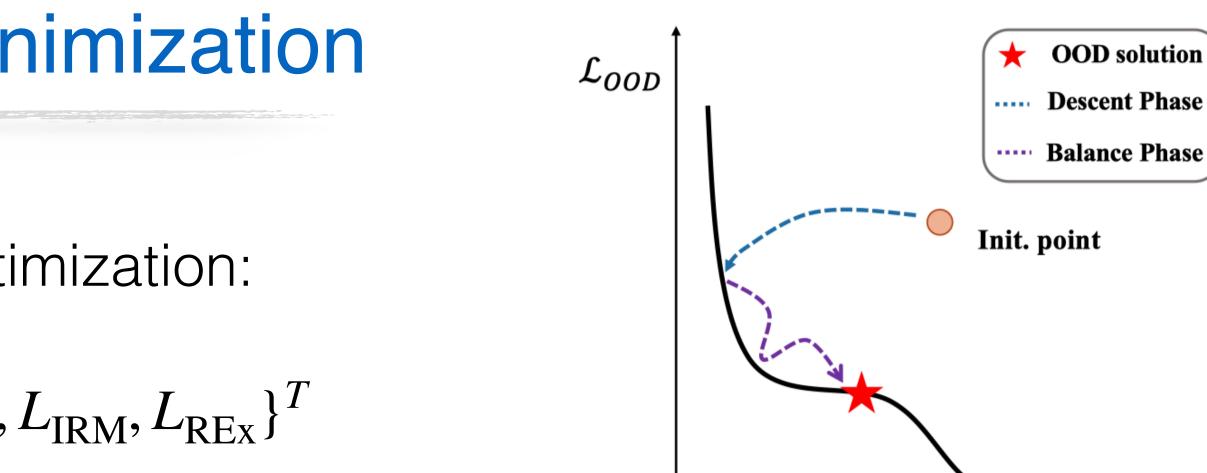
IRMX raises more challenges in the optimization:

 $\min_{C} \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REx}}\}^T$ $f = w \cdot \varphi$

- The Pareto frontier becomes **more complicated**: If the optimizer needs to be able to reach any Pareto optimal solutions!
- There can be **multiple** Pareto optimal solutions: ✓ A preference of each objective is required! PAIR-o as the OOD optimizer;

Theoretical results (Informal):

Under mild assumptions, let f_{OOD} be the desired OOD solution w.r.t. an underlying preference \mathbf{p}_{OOD} , PAIR-o converges and approximates to $f_{
m OOD}$ for any approximated ${f \widehat{p}}_{
m OOD}.$



 \mathcal{L}_{ERM} Exact Pareto optimal search

OOD solution

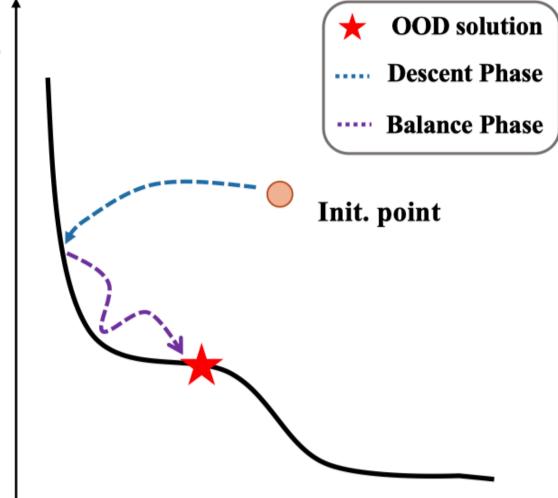
Descent Phase



PAIR: PAreto Invariant Risk minimization \mathcal{L}_{OOD} IRMX raises more challenges in the optimization: $\min \{L_{\text{ERM}}, L_{\text{IRM}}, L_{\text{REx}}\}^T$

 $f = w \cdot \varphi$

- The Pareto frontier becomes **more complicated**: If the optimizer needs to be able to reach any Pareto optimal solutions!
- There can be **multiple** Pareto optimal solutions:
 - ✓ A preference of each objective is required! PAIR-o as the OOD optimizer;
 - \checkmark It also motivates a new model selection criteria, by selecting models that maximally satisfy the Exact Pareto Optimality! **PAIR-s** as the OOD model selector;



 \mathcal{L}_{ERM} Exact Pareto optimal search

Causal Invariance Recovery Tests

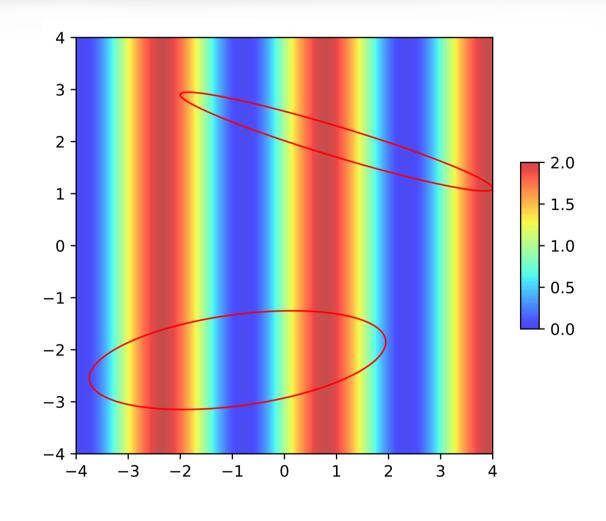
Regression target: $Y = sin(X_1) + 1$, only depends on the x-axis;

Training envs:

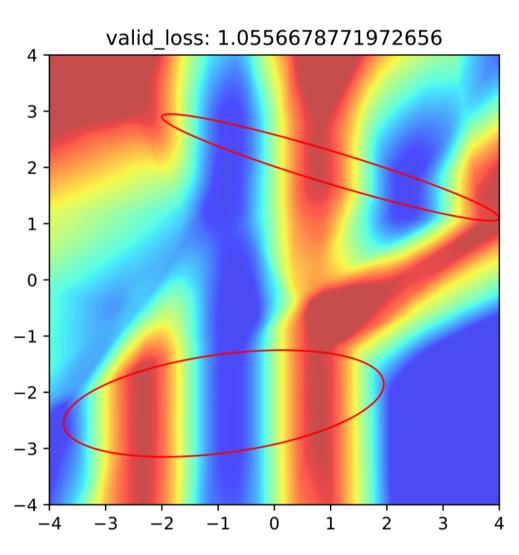
Two elliptical regions (Gaussian distributions) marked in red;

Invariance:

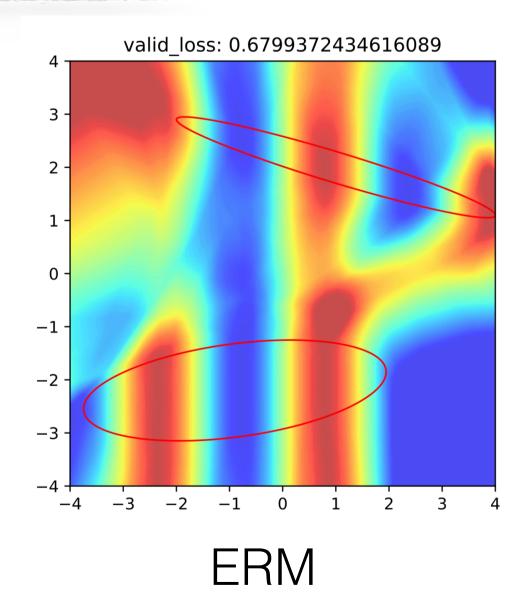
The **overlapped** x-axis region, i.e., [-2,2].



Ground Truth

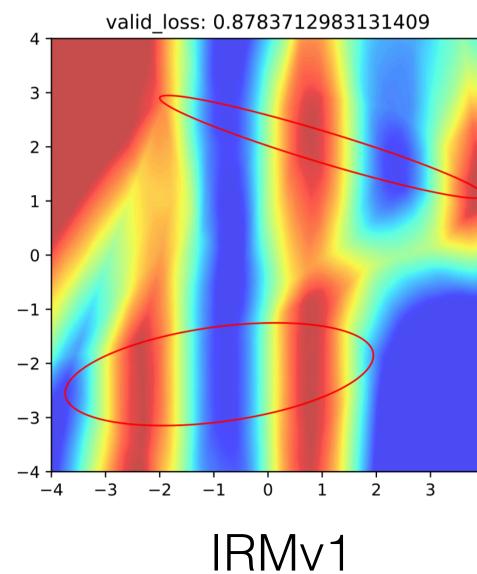


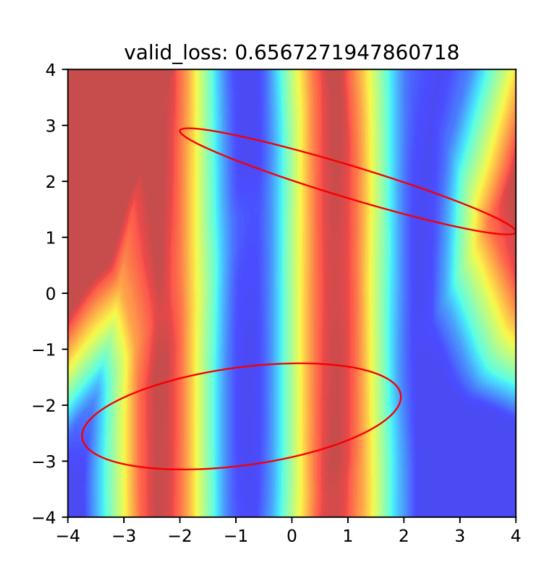
VREx



valid_loss: 0.9501814246177673

IRMX



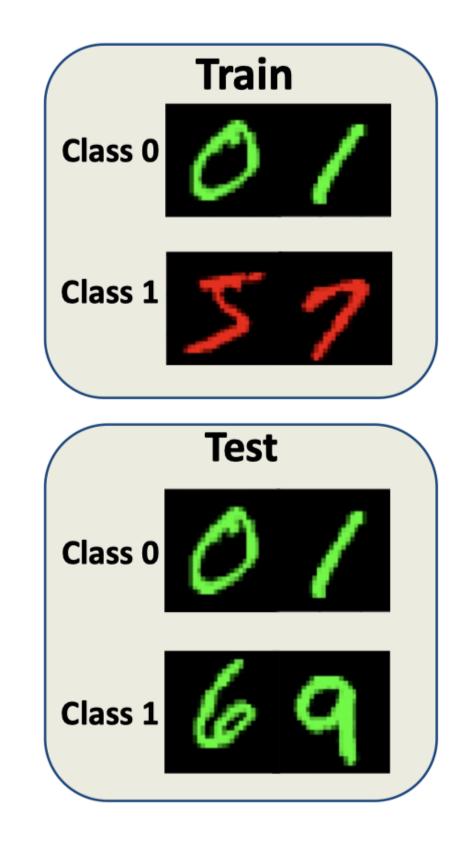


PAIR

Proof-of-Concept Experiments

Ţ

Table 1: OOD Performance on COLOREDMNIST										
Method	CMNIST	CMNIST-m	Avg.							
ERM	17.1 ± 0.9	73.3 ± 0.9	45.2							
IRMv1	67.3 ± 1.9	76.8 ± 3.2	72.1							
V-REx	68.6 ± 0.7	82.9 ± 1.3	75.8							
IRMX	65.8 ± 2.9	81.6 ± 2.0	73.7							
PAIR-o $_f$	68.6 ± 0.9	83.7 ± 1.2	76.2							
PAIR-O $_{arphi}$	68.6 ± 0.8	83.7 ± 1.2	76.2							
$\mathbf{PAIR-o}_w$	69.2 ± 0.7	83.7 ± 1.2	76.5							
Oracle	72.2 ± 0.2	86.5 ± 0.3	79.4							
Optimum	75	90	82.5							
Chance	50	50	50							



(Arjovsky et al., 2019; Zhang et al., 2022)

PAIR as the optimizer

Table 2: OOD generalization performances on WILDS benchmark.

	CAMELYON17	CIVILCOMMENTS	FMoW	IWILDCAM	PovertyMap	RxRx1	Avg. Rank(↓) [†]	
	Avg. acc. (%)	Worst acc. (%)	Worst acc. (%)	Macro F1	Worst Pearson r	Avg. acc. (%)		
ERM	70.3 (±6.4)	56.0 (±3.6)	32.3 (±1.25)	30.8 (±1.3)	$0.45(\pm 0.06)$	29.9 (±0.4)	4.50	
CORAL	59.5 (±7.7)	65.6 (±1.3)	31.7 (±1.24)	32.7 (±0.2)	0.44 (±0.07)	28.4 (±0.3)	5.50	
GroupDRO	68.4 (±7.3)	$70.0~(\pm 2.0)$	$30.8~(\pm 0.81)$	$23.8~(\pm 2.0)$	$0.39(\pm 0.06)$	23.0 (±0.3)	6.83	
IRMv1	$64.2~(\pm 8.1)$	$66.3(\pm 2.1)$	30.0 (±1.37)	15.1 (±4.9)	$0.43~(\pm 0.07)$	$8.2~(\pm 0.8)$	7.67	
V-REx	71.5 (±8.3)	$64.9(\pm 1.2)$	$27.2~(\pm 0.78)$	$27.6~(\pm 0.7)$	$0.40~(\pm 0.06)$	$7.5~(\pm 0.8)$	7.00	
Fish	$74.3~(\pm 7.7)$	$73.9(\pm 0.2)$	$34.6~(\pm 0.51)$	$24.8~(\pm 0.7)$	$0.43~(\pm 0.05)$	$10.1~(\pm 1.5)$	4.33	
LISA	74.7 (±6.1)	70.8 (±1.0)	$33.5~(\pm 0.70)$	$24.0~(\pm 0.5)$	0.48 (±0.07)	31.9 (±0.8)	2.67	
IRMX	67.0 (±6.6)	$74.3(\pm 0.8)$	33.7 (±0.78)	26.6 (±0.9)	0.45 (±0.04)	28.7 (±0.2)	4.00	
PAIR-0	74.0 (±7.0)	$75.2(\pm 0.7)$	35.5 (±1.13)	27.9 (±0.7)	$0.47~(\pm 0.06)$	$28.8~(\pm 0.1)$	2.17	

[†]Averaged rank is reported because of the dataset heterogeneity. A lower rank is better.

PAIR re-empowers IRMv1 and achieves new state-of-the-arts across 6 challenging realistic datasets.

PAIR as the model selector

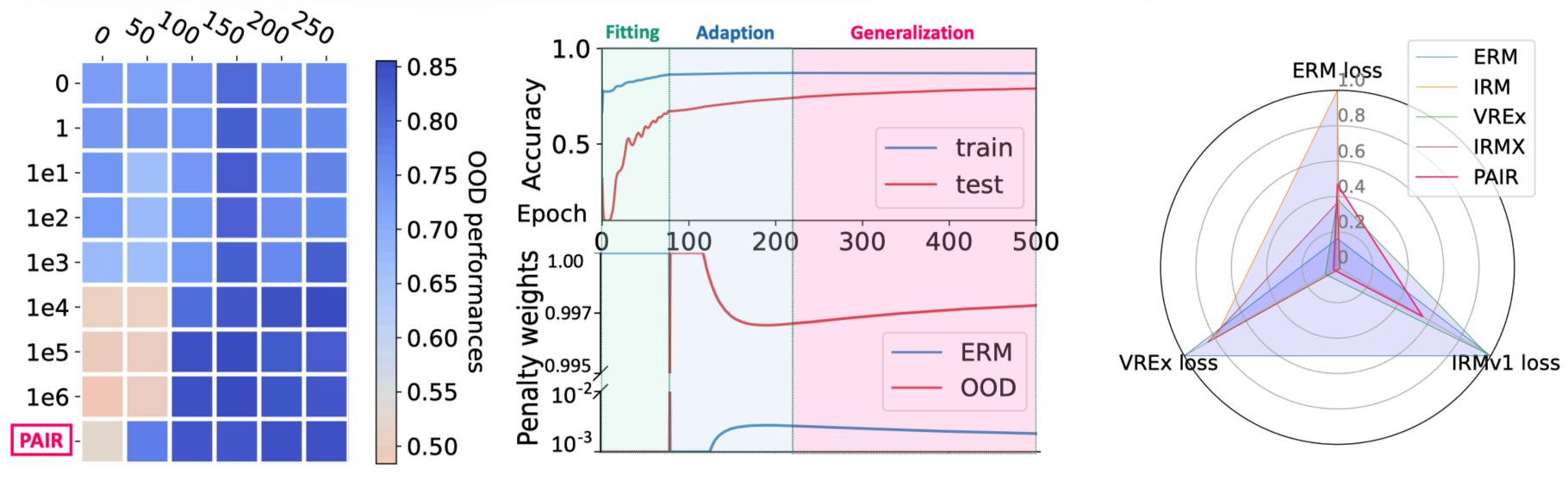
		COLOREDMNIST [†]			PACS [‡]				TERRAINCOGNITA [†]						
	PAIR-s	+90%	+80%	10%	Δ wr.	Α	С	Р	S	Δ wr.	L100	L38	L43	L46	Δ wr.
ERM		71.0	73.4	10.0		87.2	79.5	95.5	76.9		46.7	41.8	57.4	39.7	
DANN DANN	\checkmark	$71.0\\71.6$	73.4 73.3	$\begin{array}{c} 10.0\\ 10.9\end{array}$	+0.9	$\begin{array}{c} 86.5\\ 87.0\end{array}$	$\begin{array}{c} 79.9 \\ 81.4 \end{array}$	$\begin{array}{c} 97.1\\ 96.8\end{array}$	$75.3 \\ 77.5$	+2.2	$\begin{array}{c} 46.1 \\ 43.1 \end{array}$	$\begin{array}{c} 41.2\\ 41.1\end{array}$	$\begin{array}{c} 56.7 \\ 55.2 \end{array}$	$\begin{array}{c} 35.6\\ 38.7 \end{array}$	+3.1
GroupDRO GroupDRO	\checkmark	72.6 72.7	$73.1 \\73.2$	$\begin{array}{c} 9.9 \\ 13.0 \end{array}$	+3.1	$87.7 \\ 86.7$	82.1 83.2	98.0 97.8	$\begin{array}{c} 79.6 \\ 81.4 \end{array}$	+1.8	$\begin{array}{c} 48.4\\ 48.4\end{array}$	$\begin{array}{c} 40.3\\ 40.3\end{array}$	$57.9 \\ 57.9$	$\begin{array}{c} 40.0\\ 40.0\end{array}$	+0.0
IRMv1 IRMv1	\checkmark	$\begin{array}{c} 72.3 \\ 67.4 \end{array}$	$\begin{array}{c} 72.6 \\ 64.8 \end{array}$	9.9 24 .2	+14.3	$\begin{array}{c} 82.3\\ 85.3\end{array}$	$\begin{array}{c} 80.8\\ 81.7\end{array}$	$\begin{array}{c} 95.8\\ 97.4\end{array}$	$78.9 \\ 79.7$	+0.8	$\begin{array}{c} 48.4\\ 40.4\end{array}$	$\begin{array}{c} 35.6\\ 38.3\end{array}$	$55.4\\48.8$	$\begin{array}{c} 40.1\\ 37.0\end{array}$	+1.4
Fishr Fishr	\checkmark	$72.2 \\ 69.1$	$73.1 \\ 70.9$	$9.9 \\ 22.6$	+12.7	88.4 87.4	$\begin{array}{c} 82.2\\ 82.6\end{array}$	$97.7 \\ 97.5$	81.6 82.2	+0.6	49.2 51.0	$\begin{array}{c} 40.6\\ 40.7\end{array}$	57.9 58.2	40.4 40.8	+0.3

Using the training domain validation accuracy. ⁺Using the test domain validation accuracy.

PAIR-s substantially improves the worst environment performance of all representative OOD methods up to 10%.

Table 3: OOD generalization performances using DOMAINBED evaluation protocol.

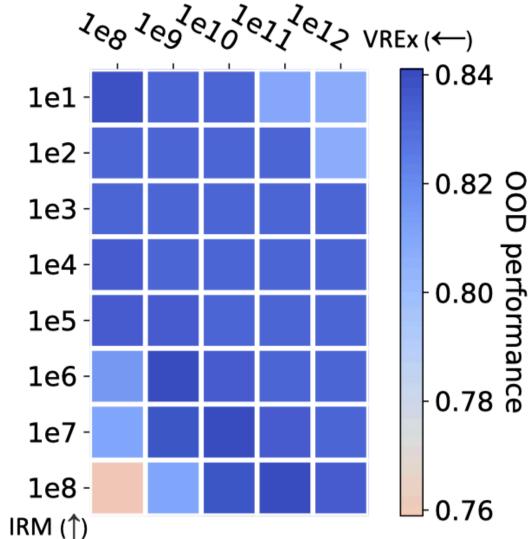
How PAIR mitigates the optimization dilemma



(a) PAIR v.s. IRMX

(b) Optimization trajectory (c) Normalized losses

(a). PAIR alleviates the exhaustive parameter tuning efforts;
(b), (c). PAIR adaptively tunes the penalty weights towards better OOD solutions;
(d). PAIR is also robust to preference choices;



(d) Preference sensitivity

Summary

We provided a new understanding of the optimization dilemma in OOD generalization from the Multi-Objective Optimization perspective.

We attributed the failures of OOD optimization to the compromised robustness of relaxed OOD objectives and the unreliable optimization scheme.

We highlighted the importance of trading-off the ERM and OOD objectives and proposed a new optimization scheme PAIR to mitigate the dilemma.

YOU! Contact: <u>yqchen@cse.cuhk.edu.hk</u>