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Abstract

Despite recent success in using the invariance
principle for out-of-distribution (OOD) general-
ization on Euclidean data (e.g., images), studies
on graph data are still limited. Different from
images, the complex nature of graphs poses
unique challenges to adopting the invariance
principle. In particular, distribution shifts on
graphs can appear in a variety of forms such as
attributes and structures, making it difficult to
identify the invariance. Moreover, domain or
environment partitions, which are often required
by OOD methods on Euclidean data, could be
highly expensive to obtain for graphs. To bridge
this gap, we propose a new framework, called
Graph Out-Of-Distribution Generalization
(GOOD), to capture the invariance of graphs for
guaranteed OOD generalization under various
distribution shifts. Specifically, we characterize
potential distribution shifts on graphs with causal
models, concluding that OOD generalization on
graphs is achievable when models focus only on
subgraphs containing the most information about
the causes of labels. Accordingly, we propose
an information-theoretic objective to extract
the desired subgraphs that maximally preserve
the invariant intra-class information. Learning
with these subgraphs is immune to distribution
shifts. Extensive experiments on both synthetic
and real-world datasets, including a challenging
setting in Al-aided drug discovery, validate the
superior OOD generalization ability of GOOD.

1. Introduction

Graph neural networks (GNN5s) have gained great success
in tasks involving relational information (Kipf & Welling,
2017; Hamilton et al., 2017; Velickovi¢é et al., 2018; Xu
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et al., 2018; 2019). However, it assumes that the training
and test graphs are drawn from the same distribution, which
is often violated in reality (Hu et al., 2020; Koh et al., 2021;
Huang et al., 2021; Ji et al., 2022). The mismatch between
training and test distributions, i.e., distribution shifts, in-
troduced by some underlying environmental factors related
to data collection or processing, could seriously degrade
the performance of deployed models (Beery et al., 2018;
DeGrave et al., 2021). Such out-of-distribution (OOD) gen-
eralization failures become the major roadblock for practical
applications of graph neural networks (Ji et al., 2022).

Meanwhile, enabling OOD generalization on Euclidean data
has received surging attention and several solutions were
proposed (Arjovsky et al., 2019; Sagawa* et al., 2020; Ben-
gio et al., 2020; Krueger et al., 2021; Creager et al., 2021;
Koyama & Yamaguchi, 2020; Ahuja et al., 2021). In partic-
ular, the invariance principle from causality is at the heart of
those works (Peters et al., 2016; Pearl, 2009; Rojas-Carulla
etal., 2018). The principle leverages the Independent Causal
Mechanism (ICM) assumption (Pearl, 2009; Peters et al.,
2017) and implies that, predictions that focus only on the
causes of the label can stay invariant to a large class of dis-
tribution shifts (Peters et al., 2016; Arjovsky et al., 2019).

Despite the success of the invariance principle on Euclidean
data, the complex nature of graphs raises several new chal-
lenges that prohibit direct adoptions of the principle. First,
distribution shifts on graphs can happen at both attribute-
level and structure-level, and be observed in multiple forms
such as graph sizes and homophily (Wu et al., 2022a). More-
over, each of the shifts can spuriously correlate with labels in
different modes (Nagarajan et al., 2021; Ahuja et al., 2021).
The entangled distribution shifts make it more difficult to
identify the invariance on graphs. Second, OOD methods
developed on Euclidean data often require additional envi-
ronment (or domain) labels for distinguishing the sources
of distribution shifts (Arjovsky et al., 2019). However, the
environment labels could be highly expensive to obtain and
hence often unavailable for graphs, as collecting the labels
usually requires expert knowledge due to the abstraction
of graphs (Hu et al., 2020). These challenges render the
problem studied in this paper even more challenging:

How could one generalize the invariance principle to
enable OOD generalization on graphs?
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Figure 1. GOOD framework: GNNs need to classify graphs based
on the specific motif (“House” or “Cycle”). The featurizer g will
extract an (orange colored) subgraph G from each input for the
classifier f. to predict the label. The objective of g is implemented
in a contrastive strategy s.t. the distribution of G. at the latent
sphere will be optimized to maximize intra-class information hence
predictions will be invariant to distribution shifts.

To solve the above problem, we propose a new framework,
Graph Out-Of-Distribution Generalization (GOOD), to
enable guaranteed OOD generalization on graphs under
different distribution shifts. Specifically, we build three
Structural Causal Models (SCMs) (Pearl, 2009) to charac-
terize the distribution shifts that could happen on graphs
(Sec. 2.1). Then, we generalize the invariance principle to
graphs for OOD generalization: GNNSs are invariant to dis-
tribution shifts if they focus only on a invariant and critical
subgraph G, that contains the most of the information in
G about the underlying causes of the label. Thus, we can
achieve OOD generalization on graphs with two processes:
invariant subgraph identification and label prediction. Ac-
cordingly, shown as Fig. 1, we implement a prototypical
algorithm that decomposes a GNN into: a) a featurizer g for
identifying the invariant subgraph G. from G b) a classi-
fier f. for making predictions based on G.. To identify the
desired G, we derive an information-theoretic objective for
g to extract subgraphs that maximally preserve the invariant
intra-class information. We show that this approach can
provably identify the underlying G, (Sec. 3).

Experiments on 16 synthetic and realistic datasets with vari-
ous distribution shifts, including a challenging setting from
Al-aided drug discovery (Ji et al., 2022), show that GOOD
can significantly outperform all of existing methods, demon-
strating its promising OOD generalization ability (Sec. 4).

To our best knowledge, there is no existing work that could
handle more comprehensive graph distribution shifts than
GOOD while also with OOD generalization guarantees.
Discussions on related works are deferred to Appendix C.2.

2. Graph OOD through the Lens of Causality

Problem Setup. In this work, we focus on OOD general-
ization in graph classification. Specifically, we are given a
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Figure 2. SCMs on graph distribution shifts.

set of graph datasets D = {D¢}. collected from multiple
environments £y Samples (G¢,Y?) € D¢ from the same
environment are considered as drawn independently from
an identical distribution P°. A GNN po h generically has an
encoder h : G — R’ that learns a meaningful representation
h¢; for each graph G to help predict the label Y = p(h¢)
with a downstream classifier p : R" — ). The goal of OOD
generalization on graphs is to train a GNN p o i with data
from training environments Dy, = {D}ccg, e, that gen-
eralizes well to all (unseen) environments, i.e., to minimize
maxccg, R¢ where R€ is the empirical risk of p o h under
environment e (Vapnik, 1991; Arjovsky et al., 2019). We
leave more background details in Appendix C.1.

2.1. Graph Generation Processes

It is known that OOD generalization is impossible without
assumptions on the environments &, (Pearl, 2009; Ahuja
et al., 2021). In the next, we brief the assumptions on graph
generation with SCMs and leave full details to Appendix A.
We take a latent-variable model perspective on the graph
generation process and assume that the graph is generated
through a mapping feen : 2 — G, where Z C R" is the
latent space and G = US_, {0, 1}V x RV*4 is the graph
space. Let F/ denote environments. We partition the latent
variable from Z into an invariant part C' € C = R™° and a
varying part S € § = R", s.t., n = n, + ng, according
to whether they are affected by E (Kiigelgen et al., 2021).
Similarly in images, C' and S can represent content and
style while E' can refer to the locations where the images
are taken (Zhang et al., 2021; Kiigelgen et al., 2021). C and
S further control the generation of the observed graphs and
can have multiple types of interactions (Ahuja et al., 2021).

Graph generation model. The SCM for graph generation is
given as Fig. 2(a). feen is decomposed into three processes
to control the generation of G, G, and G, respectively.
Among them, G, inherits the invariant information of C'
that would not be affected by the interventions (or changes)
of E (Pearl, 2009). For example, certain properties of a
molecule can usually be described by a sub-molecule, or a
functional group, which is invariant across different species,
or assays (Bohacek et al., 1996; Sterling & Irwin, 2015; Ji
et al., 2022). In contrast, the generation of G and G will be
affected by environment E¢ C E. Thus, graphs collected
from different environments (or domains) can have different
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Figure 3. Failures modes of OOD generalization on graphs: (a) GNNs need to classify whether the graph contains a “house” or “cycle”
motif, where colors represent node features. However, distribution shifts in the training data happen at both structure-level (from left to
right: “house” mostly co-occur with a hexagon), attribute-level (from upper to lower: nodes are mostly colored green if the graph contains
a “house”, or blue otherwise), and graph sizes, making GNNs hard to capture the invariance. Thus, ERM can fail for taking the shortcuts
and predicting graphs that have a hexagon or have nodes mostly colored green as “house”. IRM can fail as the test data are not sufficiently
supported by the training data. (b) GNNs optimized with neither ERM nor IRM can generalize to OOD graphs under structure-level shifts
(Struc-) or mixed with feature shifts (Mixed-). (c¢) When more complex shifts presented, GNNs can fail more seriously.

structure-level (e.g., graph sizes (Bevilacqua et al., 2021)) as
well as feature-level statistics (e.g., homophily (McPherson
et al., 2001; Chen et al., 2022; Wu et al., 2022a)).

Interactions at latent space. Following previous works (Ar-
jovsky et al., 2019; Ahuja et al., 2021), we categorize the
interactions between C' and S into Fully Informative In-
variant Features (FIIF, Fig. 2(b)) and Partially Informative
Invariant Features (PIIF, Fig. 2(c)), depending on whether C'
is fully informative about Y, i.e., (S, F') 1L Y|C. In the two
SCMs, S is directly controlled by C' in FIIF and indirectly
controlled by C' through Y in PIIF, which can exhibit differ-
ent behaviors in the observed distribution shifts. In practice,
performances of OOD algorithms can degrade dramatically
if one of FIIF or PIIF is excluded (Aubin et al., 2021; Na-
garajan et al., 2021). This issue can be more serious in
graphs, since different distribution shifts can have different
interaction modes at the latent space. Moreover, C' — Y in-
dicates the labelling process, which assigns labels Y for the
corresponding GG merely based on C'. Consequently, C is bet-
ter clustered than S when given Y (Burshtein et al., 1992;
Chapelle et al., 2006; Scholkopf, 2019; Scholkopf et al.,
2021), which also serves as the necessary separation as-
sumption for a classification task (Muller et al., 2001; Chen
et al., 2005; Mika et al., 1999), i.e., H(C|Y) < H(S|Y).

2.2. Challenges of OOD Generalization on Graphs

Built upon the graph generation process, can existing meth-
ods produce a desired invariant GNN model? Using the
BAMotif task (Luo et al., 2020) as Fig. 3, we find that, nei-
ther ERM nor IRM, or more expressive GNN architectures
can help improve the OOD generalization ability of GNNs.
The main reasons are: a) Distribution shifts on graphs are
more complicated where different types of spurious corre-
lations can be entangled via different graph properties; b)
Environment labels are usually not available due to the ab-

straction of graphs. More results are given in Appendix D.

3. Invariance Principle for Graph OOD

Aiming to bridge the gap, we propose GOOD:
Graph Out-Of-Distribution Generalization, to generalize
and instantiate the invariance principle on graphs. Full
details and theoretical analysis are deferred to Appendix B.

Invariance for OOD generalization on graphs. Accord-
ing to the ICM assumption (Peters et al., 2017), the labeling
process C' — Y in Fig. 2 is not informed nor influenced by
other processes, implying that the conditional distribution
P(Y|C) remains invariant to the interventions on the envi-
ronment latent variable ' (Pearl, 2009). Consequently, for a
GNN with a permutation invariant encoder / : G — R” and
a downstream classifier p : R» — ), if h can recover the in-
formation of C from G in the learned graph representations,
then the learning of p resembles traditional ERM (Vapnik,
1991) and can stay invariant to distribution shifts.

Causal algorithmic alignment. To enable a GNN to learn
to extract the information about C' from GG, we propose to
explicitly aligns with the two causal mechanisms during the
graph generation, i.e., C — G and (G4, Eg,G.) — G, mo-
tivated by Xu et al. (2020). Specifically, we realize the align-
ment by decomposing a GNN into two sub-components: a)
a featurizer GNN ¢ : G — G, aiming to identify the desired
G.; b) a classifier GNN f. : G. — ) that predicts the label
Y based on the estimated G, where G, refers to the space
of subgraphs of G. Formally, the learning objectives of f.
and g can be formulated as:

min B(f(Ge)), st Ge LB, Ge = g(G), (1)
c g

where R(f.(G.)) is the empirical risk of f, that takes G as
inputs to predict label Y for GG, and G.. is the intermediate
subgraph containing information about C' and hence needs
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Table 1. OOD generalization performance on structure and mixed shifts for synthetic graphs.

SPMoTIE-STRUC T

SPMOTIF-MIXED

BIAS=0.33 BIAS=0.60 BIAS=0.90 BIAS=0.33 BIAS=0.60 BIAS=0.90 AVG
ERM 59.49 (3.50) 55.48 (4.84)  49.64 (4.63) | 58.18(4.30) 49.29(8.17)  41.36(3.29) | 52.24
ASAP 64.87 (13.8) 64.85(10.6)  57.29 (14.5) | 66.88 (15.0) 59.78 (6.78) 50.45(4.90) | 60.69
DIR 58.73 (11.9)  48.72(14.8)  41.90(9.39) | 67.28 (4.06) 51.66 (14.1) 38.58(5.88) | 51.14
IRM 57.15 (3.98) 61.74 (1.32)  45.68 (4.88) | 58.20(1.97) 49.29(3.67) 40.73 (1.93) | 52.13
V-REX 54.64 (3.05) 53.60 (3.74)  48.86(9.69) | 57.82(5.93) 48.25(2.79) 43.27(1.32) | 51.07
EIIL 56.48 (2.56) 60.07 (4.47) 55.79 (6.54) | 53.91(3.15) 48.41(5.53) 41.75(4.97) | 52.73
IB-IRM 58.30(6.37) 54.37(7.35)  45.14(4.07) | 57.70 (2.11) 50.83 (1.51)  40.27 (3.68) | 51.10
CNC 70.44 (2.55) 66.79 (9.42) 50.25 (10.7) | 65.75(4.35) 59.27(5.29)  41.58(1.90) | 59.01
GOODv1 71.07 (3.60) 63.23 (9.61) 51.78 (7.29) | 74.35(1.85) 64.54 (8.19) 49.01 (9.92) | 62.33
GOODv2 | 77.33 (9.13) 69.29 (3.06) 63.41(7.38) | 72.42(4.80) 70.83(7.54) 54.25(5.38) | 67.92

THigher accuracy and lower variance indicate better OOD generalization ability.

to be independent of E. Moreover, the extracted G, can
either share the same graph space with input G or has its own
space with latent node and edge features, depending on the
specific graph generation process. In practice, interpretable
GNN architectures (Yuan et al., 2020) are compatible with
GOOD, hence can serve as practical choices for GOOD.
Details are given in Appendix F.

Optimization objective. To ensure the independence con-
straint G’c 1 E under the absence of E, we translate other
properties of G, from SCMs in Sec. 2.1 into differentiable
and equivalent conditions. In a simplistic setting where
all the invariant subgraphs G, have the same size s, i.e.,
|G| = sc. We derive the first objective (GOODV1):

(G G.|Y),

2)
where G. = ¢(G),G. = ¢(G) and G ~ P(G|Y), i.e., G
and (G have the same label. In Theorem B.2, we discuss
why Eq. 2 is equivalent to Eq. 1. Although being effective,
Eq. 2 requires a strong assumption about the size of G..
However, the size of G is usually unknown or changes
for different C's. In this circumstance, maximizing Eq. 2
without additional constraints would lead to the presence of
subgraphs of G in éc. For instance, C:‘C = ( is a trivial
solution to Eq. 2 when s, = oc.

max I(éc; Y), s.t.G. €

arg max
fesg

éc:g(G)7‘GAE|§5u

To circumvent this limitation, we further resort to the proper-
ties of G5 and obtain a new objective GOODV?2 as follows

max I[(Gy;Y) + I(Gg;Y),

ferg

st. G, € (G G.|Y),

arg max
=9(G),Gc=9(G)

X (3)
G
I(ésyy) Sl(émy)a GS:G_Q(G)7

where éc, éc and G are the same as Eq. 2. We deffer the the-
oretical analysis and implementation details to Appendix B.
4. Empirical Studies

We conduct extensive experiments with 16 datasets to ver-
ify the effectiveness of GOOD. We give analysis on the

synthetic datasets and more details to Appendix G.

Datasets. We use the SPMotif datasets from DIR (Wu et al.,
2022c) where artificial structural shifts and graph size shifts
are nested (SPMotif-Struc). Besides, we construct a harder
version mixed with attribute shifts (SPMotif-Mixed).

Baselines and our methods. Besides ERM, we also com-
pare with SOTA interpretable GNNs, GIB (Yu et al., 2021),
ASAP Pooling (Ranjan et al., 2020), and DIR (Wu et al.,
2022c), to validate the effectiveness of the optimization
objective in GOOD. To validate the effectiveness of the
decomposition in GOOD, we compare GOOD with SOTA
OOD objectives including IRM (Arjovsky et al., 2019), v-
Rex (Krueger et al., 2021) and IB-IRM (Ahuja et al., 2021),
EIIL (Creager et al., 2021) and CNC (Zhang et al., 2022).
More comparison details are deferred to Appendix G.3.

Evaluation. We report the mean and standard deviation of
classification accuracy for all datasets from multiple times.

OOD performance on structure and mixed shifts. In Ta-
ble 1, we report the test accuracy of each method, where we
omit GIB due to its poor convergence. Different biases indi-
cate different strengths of the distribution shifts. Although
the training accuracy of most methods converge to more than
99%, the test accuracy decreases dramatically as the bias
increases and as more distribution shifts are mixed, which
concurs with our discussions in Sec. 2.2 and Appendix D.
Due to the simplicity of the task as well as the relatively high
support overlap between training and test distributions, in-
terpretable GNNs and OOD objectives can improve certain
OOD performance, while they can have high variance since
they donot have OOD generalization guarantees. In contrast,
GOODv1 and GOODV2 outperform all of the baselines by
a significant margin up to 10% with lower variance, which
demonstrates the effectiveness and excellent OOD gener-
alization ability of GOOD. More analysis and results on
real-world datasets are given in Appendix G.

Conclusion. We studied the OOD generalization on
graphs via graph classification, and propose a new solution
GOOD through the lens of causality. By modeling potential
distribution shifts on graphs with SCMs, we generalized and
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instantiated the invariance principle to graphs, which was
shown to have promising theoretical and empirical OOD
generalization ability under a variety of distribution shifts.
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A. Full Structural Causal Models on Graph Generation

Supplementary to the graph generation process in Sec. 2.1, we provide full SCMs on the graph generation process in this
section as shown in Fig. 4. Formal descriptions are given as Assumptions A.1, A.2, A.3, A4.

To begin with, we take a latent-variable model perspective on the graph generation process and assume that the graph is
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generated through a mapping feen : £ — G, where Z C R"™ is the latent space and G = U_, {0, 1}V x RV*4 s the graph
space. Let E denote environments. Following previous works (Kiigelgen et al., 2021; Ahuja et al., 2021), we partition the
latent variable from Z into an invariant part C' € C = R" and a varying part S € S = R"s, s.t., n = n, + ns, according
to whether they are affected by E. Similarly in images, C' and S can represent content and style while E can refer to the
locations where the images are taken (Beery et al., 2018; Zhang et al., 2021; Kiigelgen et al., 2021). While in graphs, C
can be the latent variable that controls the generation of functional groups in a molecule, which can not be affected by
the changes of environments, such as species (Scaffold), experimental environment for examining the chemical property
(Assay) (Ji et al., 2022). On the contrary, the other latent variable S inherits environment-specific information thus can
further affect the finally generated graphs. Besides, C' and S can have multiple types of interactions at the latent space with
environments F and labels Y, which will generate different types of spurious correlations (Ahuja et al., 2021).

Assumption A.1 (Graph Generation SCM).

(Z5.2%) = £ (C), G

= gen

(Zjl»Z,sX) = (A’X)S(S)a Gs = GS(ZISLDZ}SOEG)v

gen gen

G = f&. (G, Gy, Eg).

(25, 2%),

gen

Specifically, the graph generation process is shown as Fig. 4(a). The generative mapping fen is decomposed into
fééﬁ’x)c,fg;, fg(é?{X)s G and fg(ijn to control the generation of (24, Z%), G., (2%, Z%), Gs, and G, respectively. Given

’ en

the variable partitions Cgand S at the latent space Z, they control the generation of the adjacency matrix and features for the
invariant subgraph G and spurious subgraph G, through two pairs of latent variables (£, Z% ) and (Z%, Z% ), respectively.
Z4 and Z3 will control the structure-level properties in the generated graphs, such as degrees, sizes, and subgraph densities.
While Z; and Z5; mainly control the attribute-level properties in the generated graphs, such as homophily. Then, G and
G are entangled into the observed graph G through gcjn. It can be a simply JOIN of a G with one or multiple G5, or more
complex generation processes controlled by the latent variables (Snijders & Nowicki, 1997; Lovasz & Szegedy, 2006; You
etal., 2018; Luo et al., 2021; Bevilacqua et al., 2021). Note that since our focus is to describe the potential distribution shifts
with SCMs, in Assumption A.1, we aim to build a SCM that is compatible to many graph generation processes (Snijders &
Nowicki, 1997; Lovasz & Szegedy, 2006; You et al., 2018; Luo et al., 2021), and leave specific graph generation processes
and their implications to OOD generalization to future work.

Moreover, a subset of environment latent variable F¢ C F will affect the generation of G and G. Thus, graphs collected
from different environments can have different structure-level properties such as degrees, graph sizes, and subgraph densities,
as well as feature-level properties such as homophily (Knyazev et al., 2019; Yehudai et al., 2021; Bevilacqua et al., 2021;
Chen et al., 2022). Meanwhile, all of them can spuriously correlated with the labels depending on how the underlying latent
variables are interacted with each others. The interaction types can be further divided into two axiom types FIIF and PIIF,
as well as the mixed one MIIF. Previous OOD methods such as GIB (Yu et al., 2021) and DIR (Wu et al., 2022¢) mainly
focus on FIIF case, while others such as IRM (Arjovsky et al., 2019) mainly focuses on the PIIF case. Evidences show
that failing to model either of them when developing the OOD objectives can have serious performance degenerations in
practice (Aubin et al., 2021; Nagarajan et al., 2021). That is why we aim to model both of them in our solution.

Assumption A.2 (FIIF SCM).
Y = finv(C)v S = fspu(ca E)a G = fgen(C7 S)

Assumption A.3 (PIIF SCM).
Y = fin(C), S:= fu(YL E), G := feen(C, S5).

Assumption A.4 (MIIF SCM).
Y = finV(C)7 Sy = fSpu(07 E)7 Sy = fspu(K E); G = fgen(C, SlaSQ)-

As for the interactions between C' and .S at the latent space, we categorize the interaction modes into Fully Informative
Invariant Features (FIIF, Fig. 4(b)), and Partially Informative Invariant Features (PIIF, Fig. 4(c)), depending on whether
the latent invariant part C' is fully informative about label Y, i.e., (S, E) 1L Y|C. It is also possible that FIIF and PIIF are
entangled into a Mixed Informative Invariant Features (MIIF,Fig. 4(d)). We follow Arjovsky et al. (2019); Ahuja et al.
(2021) to formulate the SCMs for FIIF and PIIF, where we omit noises for simplicity (Pearl, 2009; Peters et al., 2017). Since
MIIF is built upon FIIF and PIIF, we will focus on the axiom interaction modes (FIIF and PIIF) in this paper, while most of
our discussions can be extended to MIIF or more complex interactions built upon FIIF and PIIF.



Invariance Principle Meets Out-of-Distribution Generalization on Graphs

(a) Graph Generation SCM (b) FIIF SCM (c) PIIF SCM (d) MIIF SCM

Figure 4. Full SCMs on Graph Distribution Shifts.

Among all of the interaction modes, fg.n corresponds to the graph generation process in Assumption A.1. f,, is the
mechanism describing how S is affected by C' and E at the latent space. In FIIF, S is directly controlled by C' while in
PIIF, indirectly controlled by C' through Y", which can exhibit different behaviors in practice (Ahuja et al., 2021; Nagarajan
et al., 2021). Additionally, in MIIF, S is further partitioned into S; and S depending on whether it is directly or indirectly
controlled by C, respectively. Moreover, fi,, : C — )Y indicates the labeling process, which assigns labels Y for the
corresponding GG merely based on C'. Consequently, C is better clustered than S when given Y (Burshtein et al., 1992;
Chapelle et al., 2006; Scholkopf, 2019; Scholkopf et al., 2021), which also serves as the necessary separation assumption for
a classification task (Muller et al., 2001; Chen et al., 2005; Mika et al., 1999).

Assumption A.5 (Better Clustered Invariant Features). H(C|Y) < H(S|Y).
B. Full GOOD Framework

B.1. Invariant Graph Neural Networks
To start, we formulate the desired GNN that is able to generalize to OOD graphs under different distribution shifts as below.

Definition B.1 (Invariant GNN). Given a set of graph datasets {D¢}. and environments &y that follow the same graph
generation process in Sec. 2.1, considering a GNN p o h that has a permutation invariant graph encoder h : G — R” and a
downstream classifier p : RM = ), p o his an invariant GNN if it minimizes the worst case risk among all environments,
i.e., min maxecg,, 2°.

B.2. Invariance for OOD Generalization on Graphs

Towards extending the invariance principle to graphs under SCMs in Sec. 2.1, we need to identify a set of variables that have
stable causal relationship with Y under both FIIF and PIIF (Assumption A.2, A.3). According to the ICM assumption (Peters
et al., 2017), the labeling process C' — Y is not informed nor influenced by other processes, implying that the conditional
distribution P(Y'|C') remains invariant to the interventions on the environment latent variable £ (Pearl, 2009). Consequently,
for a GNN with a permutation invariant encoder h : G — R" and a downstream classifier p: R" — Y, if h can recover the
information of C' from G in the learned graph representations, then the learning of p resembles traditional ERM (Vapnik,
1991) and can achieve the desired min-max optimality required by an invariant GNN (Def. B.1). However, recovering
C from G is particularly difficult, since the generation of G from C involves two causal mechanisms fgcig and fg(e;n in
Assumption A.1. The unavailability of E further adds up the difficulty of enforcing the independence between the learned
representations and F.

B.3. Invariant Graph Learning Framework

Causal algorithmic alignment. To enable a GNN to learn to extract the information about C' from G, we propose the
GOOD framework that explicitly aligns with the two causal mechanisms fgcig and fggn in Assumption A.1. The idea of
alignment in GOOD is motivated by the algorithmic reasoning results that a neural network can learn a reasoning process
better if its computation structure aligns with the process better (Xu et al., 2020; 2021b). Specifically, we realize the
alignment by decomposing a GNN into two sub-components': a) a featurizer GNN g : G — G, aiming to identify the
desired G; b) a classifier GNN f. : G. — ) that predicts the label Y based on the estimated G, where G, refers to the

!The encoder of the GNN in GOOD can be regarded as the composition of g and the graph encoder in f..
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space of subgraphs of GG. Formally, the learning objectives of f. and g can be formulated as:

min R(f.(G.)), st.Ge L E, G. = g(Q), (4)

fer g
where R(f.(G.)) is the empirical risk of f, that takes G, as inputs to predict label Y for G, and G, is the intermediate
subgraph containing information about C' and hence needs to be independent of E. Moreover, the extracted G can either
share the same graph space with input G or has its own space with latent node and edge features, depending on the
specific graph generation process. In practice, architectures from the literature of interpretable GNNs are compatible with
GOOD (Yuan et al., 2020), hence can serve as practical choices for the implementation of GOOD. More details are given
in Appendix F.

Although we can technically align with the two causal mechanisms with ¢ and f,, trivially optimizing this architecture
can not satisfy the condition G. L E. Formally, merely minimizing R( fC(C:'C)) is equivalent to maximizing a variational
lower bound of [ (Cjc; Y') (Alemi et al., 2017; Yu et al., 2021), which may include a subgraph from G in G’C since G also
shares certain mutual information with Y. Moreover, the unavailability of F prevents the direct usage of E in enforcing
the independence that is often adopted by previous objectives (Arjovsky et al., 2019; Krueger et al., 2021; Ahuja et al.,
2021; Sagawa* et al., 2020; Ganin et al., 2016; Sun & Saenko, 2016; Dou et al., 2019; Mahajan et al., 2021), making the
identification of G, more challenging.

Optimization objective. To mitigate this issue, we need to translate other properties of G from SCMs in Sec. 2.1 into
differentiable and equivalent conditions to the independence constraint G, 1L F.

To start, consider a simplistic setting where all the invariant subgraphs G have the same size s, i.e., |G| = s.”. When
maximizing I(G,;Y’) by minimizing R(f.(G.)) in Eq. 4, we are trying to extract all of the informative parts in G about Y’
into G... For FIIF (Fig. 2(b)), as G already contains the maximal possible information in G about Y, GG is a solution to
max [ (C:’C, Y'). However, some subgraph of G can be replaced by some subgraph of G that is equally informative about
Y. For PIIF (Fig. 2(c)), there also exists some subgraph of G that contains additional information about Y than G, hence
G, is more likely to involve some subgraph of Gs. Thus, the new condition needs to eliminate the auxiliary subgraphs of Ge
from G such that the estimated G.. can only contain G..

Recall that for both FIIF and PIIF SCMs (Fig. 2), given two environments e; and es: if G appears in both e; and e,

the correctly identified GA? , G%z in e; and es tend to have higher mutual information about the other, i.e., (G, G.) €

arg max | (GA?1 ; GAQQ) While for G and another G corresponding to a different C’" # O, if they appear in the same

env1r0nment then including any subgraph from G in the estimated G, G for G, Gy will enlarge their mutual information,
e., (Ge,Go) € argmin [ (Gc, Geo ). Thus, we can derive another important property about G.:

G, € argmax I(Ge; Go|C = ¢) — I(Ge; Gu|C = ¢, ¢ # ¢), 3)
Ge
where G, and G, share the same C while G/ corresponds to a different ¢’. In practice, we are also not given C. However,
since C' and Y shares a stable causal relationship in both FIIF and PIIF SCMs, Y can serve as an alternative of C' in
Eq. 5. Moreover, when both I(G.; G.|C = ¢) and I(G.;Y) are maximized, I(G.; G |C = ¢, # c¢) is automatically
minimized, otherwise all classes will collapse to trivial solutions which is not possible given I (Gc; Y’) being maximized.
Thus, we can replace the independence condition in Eq. 4 and obtain the following objective (GOODv1):

(GOODv1) max I(G;Y), st.Go e argmax  I(Ge; G|Y), (6)
fers Ge=g(G),|Cc|<s.
where G, = ¢(G),G. = g(G) and G ~ P(G|Y), i.e., G and G have the same label. In Theorem B.2, we discuss why Eq. 6
is equivalent to Eq. 4. Although being effective, Eq. 6 requires a strong assumption about the size of G.. However, the size
of G. is usually unknown or changes for different C's. In this circumstance, maximizing Eq. 6 without additional constraints
would lead to the presence of subgraphs of G in G.. For instance, G, = G is a trivial solution to Eq. 6 when s, = co.

To circumvent this limitation, we further resort to the properties of G5. In both FIIF and PIIF SCMs (Fig. 2), G and G,
share certain overlapped information about Y via some subgraphs. When maximizing I(G.; G.|Y) and I(G,;Y), the
appearances of these subgraphs in G, will not affect the optimality. On the other hand, it can reduce the mutual information
between the left part G, = G — G and Y, i.e., I(Gy;Y). In other words, by maximizing I(G;Y'), we can avoid involving

>Throughout the paper, we use generalized set operators for the ease of understanding. They can have multiple implementations in
terms of nodes, edges or attributes.
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additional subgraphs from G into G’C. Meanwhile, to avoid trivial solution that G, C st during rnaximiAzing I( As; }f), we
can leverage the better clustering property of G, implied by Assumption A.5 to derive the constraint I (G;Y) < I(G.;Y).
Thus, we can obtain a new objective GOODvV?2 as follows:

max [(Ge;Y)+I(Gg;Y), st.Go e argmax  I(Ge; Go|Y),
ferg Ge=9g(G),Go=g(G) (7N

(GOODV2) I(GY) < I(GeY), Gy =G —g(G),

where G, = ¢(G), G, = g(G) and G ~ P(G|Y), i.e., G and G have the same label. We also prove the equivalence between
Eq. 7 and Eq. 4 in Theorem B.2.

B.4. Theoretical Analysis and Practical Discussions

Theorem B.2 (GOOD Induces Invariant GNNS). Given a set of graph datasets {D°}. and environments &, that follow the
same graph generation process in Sec. 2.1, assuming that (a) gcjn and gcj,g in Assumption A.I are invertible, (b) samples
from each training environment are equally distributed, i.e.,

De| = |Del, Ve, é € &, then:
(i). IfVG,,|G.| = s, then each solution to Eq. 6, elicits an invariant GNN (Def. B.1).

(ii). Each solution to Eq. 7, elicits an invariant GNN (Def. B.1).

We prove Theorem B.2 (i) and (ii) in Appendix E.2, E.3, respectively.

Practical implementations of GOOD objectives. After showing the power of GOOD, we introduce the practical
implementations of GOODv1 and GOODv2 objectives. Specifically, an exact estimate of the second term [ (dc; GC|Y)
could be highly expensive (van den Oord et al., 2018; Belghazi et al., 2018). However, contrastive learning with supervised
sampling provides a practical solution for the approximation (Khosla et al., 2020; Chopra et al., 2005; Salakhutdinov &
Hinton, 2007; van den Oord et al., 2018; Belghazi et al., 2018):

e¢(hdc ,h@c )

H(Gei GelY) R E (G, G.jmp, (Gly=y) 108 ®)

he he M é(hg, hgi)’
(GO mmyGlyey)  €Pteeted) 4 5T et
where positive samples (éc, éc) are the extracted subgraphs of graphs that have the same label of G, negative samples are
those with different labels, P,(G|) = Y') is the push-forward distribution of P(G|Y = Y') by featurizer g, P(G|Y =Y')
refers to the distribution of G given the label Y, P(G|Y # Y') refers to the distribution of G given the label that is different
from Y, thC, h¢, , hgi are the graph presentations of the estimated subgraphs, and ¢ is the similarity metric for graph

presentations. As M — oo, Eq. 8 approximates / (Cjc; GC|Y), which can be regarded as a non-parameteric resubstitution
entropy estimator via the von Mises-Fisher kernel density (Ahmad & Lin, 1976; Kandflsarpy et al., 2015; Wang & Isola,
2020). Thus, plugging it into Eq. 6 and Eq. 7 can relieve the issue of approximating I(G; G.|Y) in practice.

For the implementation of 1 (G4;Y) and the constraint I(G,;Y) < I(G.;Y) in GOODV2, a practical choice is to follow
the idea of hinge loss, I(Gs;Y) = %Rég ']I(Rég < Rg, ), where N is the number of samples, I is an indicator function that
outputs 1 when the inner condition is satisfied otherwise 0, and R and R are the empirical risk vector of the predictions

for each sample based on the corresponding G and G,. More implementation details can be found in Appendix F.

Discussions and implications of GOOD. Although using contrastive learning to improve OOD generalization is not new
in the literature (Dou et al., 2019; Mahajan et al., 2021; Zhang et al., 2022), previous methods cannot yield OOD guarantees
in graph circumstances due to the highly non-linearity and the unavailability of domain labels E. In particular, GOOD can
be reduced to directly applying contrastive learning when without the decomposition for causal algorithmic alignment.
However, in the experiments we found that merely using the contrastive objective, i.e., CNC (Zhang et al., 2022), yields
unsatisfactory OOD generalization performance, which further implies the necessity of the decomposition in GOOD.

Moreover, the architecture of GOOD can have multiple other implementations for both the featurizer and classifier, such as
identifying G, at the latent space (Scholkopf, 2019; Scholkopf et al., 2021). Since we cannot enumerate every possible
implementation, in this work we choose interpretable GNN architectures as a prototype validation for GOOD and leave
more sophisticated architectures as future works. In particular, when optimized with ERM objective, GOOD can be reduced
to interpretable GNNs. However, merely using interpretable GNNs such as ASAP (Ranjan et al., 2020), GIB (Yu et al., 2021)
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or DIR (Wu et al., 2022c) cannot yield satisfactory OOD performance. As shown in Table 2 and discussed in Appendix. D.4,
GIB can only work for FIIF, while DIR cannot yield OOD guarantees for neither FIIF and PIIF SCMs. These results are
also empirically validated in the experiments. We provide more detailed discussions in Appendix C.

C. More Discussions on Related Works and Future Directions
C.1. More backgrounds
We give more background introduction about GNNs and Invariant Learning in this section.

Graph Neural Networks. Let G = (A, X)) denote a graph with n nodes and m edges, where A € {0,1}"*" is the
adjacency matrix, and X € R"*? is the node feature matrix with a node feature dimension of d. In graph classification,
we are given a set of N graphs {G;}Y | C G and their labels {Y;}}¥., C J = R® from c classes. Then, we train a GNN
p o h with an encoder h : G — R” that learns a meaningful representation h¢ for each graph G to help predict their labels
ya = p(rg) with a downstream classifier p : R — ). The representation hg is typically obtained by performing pooling
with a READOUT function on the learned node representations:

ha = READOUT({h{/|u € V}), ®)

where the READOUT is a permutation invariant function (e.g., SUM, MEAN) (Xu et al., 2019; Ying et al., 2018; Murphy

etal., 2019; Xu et al., 2019; Chen et al., 2020; Morris et al., 2021), and th) stands for the node representation of u € V' at
K -th layer that is obtained by neighbor aggregation:

W = o (Wi - a({rf® VYo € N(u) U {u})), (10)

where NV (u) is the set of neighbors of node u, o(-) is an activation function, e.g., ReLU, and a(-) is an aggregation function
over neighbors, e.g., MEAN.

Invariant Learning. Invariant learning typically considers a supervised learning setting based on the data D = {D°},
collected from multiple environments &, where D¢ = {G¢,y¢} is the dataset from environment e € Ey. (GS,yS)
from a single environment e are considered as drawn independently from an identical distribution P¢. The goal of OOD
generalization is to train a GNN p o h : G — ) with data from training environments Dy, = {D°}.cg,ce,,. and generalize

all ?
well to all (unseen) environments, i.e., to minimize:

i Re h 11
g oo, o

where R€ is the empirical risk under environment e (Vapnik, 1991; Peters et al., 2016; Arjovsky et al., 2019). More details
can be referred in (Ahuja et al., 2021).

C.2. Related work

We provide detailed related work discussion in this section in complementary to that in Introduction (Sec. 1). To begin with,
we summarize the main differences between our solution and them in Table 2.

An overview of related works. On Euclidean data, Invariant Learning (Arjovsky et al., 2019; Creager et al., 2021; Ahuja
et al., 2021), Group Distributionally Robust Optimization (GroupDro) (Krueger et al., 2021; Sagawa* et al., 2020; Zhang
et al., 2022), Domain Adaption (DA) and Domain Generalization (DG) (Ganin et al., 2016; Sun & Saenko, 2016; Li et al.,
2018b; Dou et al., 2019; Mahajan et al., 2021; Wang et al., 2021) are three widely adopted approaches to enable OOD
generalization. However, they all have limitations when being applied to graphs. First, previous invariant learning methods
are mostly developed and analyzed for Euclidean data (Arjovsky et al., 2019; Ahuja et al., 2021; Creager et al., 2021), or
under specific SCM assumptions (Arjovsky et al., 2019), making the theoretical results hardly applicable to the complicated
graph data (Rosenfeld et al., 2021) that can have multiple types of distribution shifts (Nagarajan et al., 2021). GroupDro
that minimizes the gap between worst group risk and average risk (Krueger et al., 2021; Sagawa* et al., 2020; Zhang et al.,
2022), and DA/DG methods that aim to learn class-conditional domain invariant representations (Ganin et al., 2016; Sun
& Saenko, 2016; Li et al., 2018b; Dou et al., 2019; Wang et al., 2021), cannot guarantee a min-max optimal predictor
without additional assumptions (Arjovsky et al., 2019; Gulrajani & Lopez-Paz, 2021; Ahuja et al., 2021). Moreover, most
existing methods require environment labels that are however expensive to obtain in graphs, which limits their applications
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to graphs (Arjovsky et al., 2019; Krueger et al., 2021; Ahuja et al., 2021; Sagawa* et al., 2020; Ganin et al., 2016; Sun
& Saenko, 2016; Dou et al., 2019; Mahajan et al., 2021). In contrast, we aim at a unified framework that are provably
generalizable under different types of distribution shifts on graphs.

Another line of relevant works is about GNN explainability that aims to find a subgraph of the input as the explanation for
a GNN prediction (Ying et al., 2019; Yuan et al., 2020). Although some may leverage causality to justify the generated
explanation (Lin et al., 2021), they mostly focus on understanding the predictions of GNNs instead of for OOD generalization.
The most close works to ours are two interpretable GNNs that aim to explicitly extract a subgraph for both predictions
and explanations. However, they focus on graphs and shifts generated under a specific SCM. Although one of them can
provide theoretical guarantee for OOD generalization (Yu et al., 2021) by using the information bottleneck criteria (Ahuja
etal., 2021), they would inevitably fail to generalize to graphs generated under different SCMs. More discussions about
the failure are given in Appendix D.4. Besides, Bevilacqua et al. (2021) also discuss OOD generalization on graphs but
limited a specific graph family and graph size shifts. Wu et al. (2022b) propose OOD methods on graphs for the task of node
classification but limited to shifts under a specific SCM.

Causality and OOD Generalization. Causality comes to the stage for demystifying and improving the huge success of
machine learning algorithms to further advances (Pearl, 2019; Scholkopf, 2019; Scholkopf et al., 2021). One of the most
widely applied concept from causality is the Independent Causal Mechanism (ICM) that assumes conditional distribution of
each variable given its causes (i.e., its mechanism) does not inform or influence the other conditional distributions (Pearl,
2009; Peters et al., 2017). The invariance principle is also induced from the ICM assumption. Once proper assumptions
about the underlying data generation process via Structural Causal Models (SCM) are established, it is promising to apply
the invariance principle to machine learning models for finding an invariant representation about the causal relationship
between the underlying causes and the label (Peters et al., 2016; Arjovsky et al., 2019). Consequently, models built upon the
invariant representation can generalize to unseen environments or domains with guaranteed performance (Peters et al., 2016;
Rojas-Carulla et al., 2018; Arjovsky et al., 2019; Sagawa* et al., 2020; Bengio et al., 2020; Koyama & Yamaguchi, 2020;
Gulrajani & Lopez-Paz, 2021; Krueger et al., 2021; Creager et al., 2021; Ahuja et al., 2021). The arguably first formulation
of invariance principle was introduced by Peters et al. (2016). Arjovsky et al. (2019) propose a novel formulation of learning
causal invariance in representation learning, i.e., IRM, show how it connects with existing areas such as distributional robust
optimization (Namkoong & Duchi, 2016) and generalization (Zhang et al., 2017), and prove its effectiveness in addressing
PIIF spurious correlations (Assumption A.3). However, in practice, both PIIF and FIIF (Assumption A.2) can appear in
data, while IRM can fail in these cases (Aubin et al., 2021; Nagarajan et al., 2021). Ahuja et al. (2021) then propose to
add information bottleneck criteria into the IRM formulation to address the issue. However, their results are restricted to
linear regime and also require environment partitions to distinguish the sources of distribution shifts. Recently, Creager et al.
(2021) and Lin et al. (2022) propose new OOD objectives to relieve the needs for environment partitions, but limited to PIIF
spurious types and linear regime.

In parallel invariant learning approaches, Sagawa* et al. (2020) propose to regularize the worst group in group distributionally
robust optimization (GroupDro). Zhang et al. (2022) propose a contrastive approach to tackle GroupDro when the group
partitions are not available. However, minimizing the gap between worst group risk and averaged risk can not yield a OOD
generalizable predictors in our circumstances. Besides, traditional approaches to tackle OOD generalization also include
Domain Adaption, Transfer Learning and Domain Generalization(Rojas-Carulla et al., 2018; Chuang et al., 2020; Ganin
et al., 2016; Sun & Saenko, 2016; Li et al., 2018b; Dou et al., 2019; Mahajan et al., 2021; Wang et al., 2021), which aim to
learn the class conditional invariant representation shared across source domain and target domain. However, they all require
a stronger assumption on the availability of target domain data or the ground truth predictors (Gulrajani & Lopez-Paz, 2021;
Ahuja et al., 2021), hence are not able to yield predictors with OOD generalization guarantees. We refer interested readers
to Pearl (2019); Scholkopf (2019); Scholkopf et al. (2021) for an in-depth understanding, and Gulrajani & Lopez-Paz (2021);
Ahuja et al. (2021) for a thorough overview.

GNN Explainability. Works in GNN explainability aim to find a subgraph of the input graph as the explanation for the
prediction of a GNN model (Ying et al., 2019; Yuan et al., 2020). Although some may leverage causality in explanation
generation (Lin et al., 2021), they mostly focus on understanding the predictions of GNNs in a post-hoc manner instead
of OOD generalization. Recently there are two works aiming to provide robust explanations under distribution shifts,
i.e., GIB (Yu et al., 2021) and DIR (Wu et al., 2022c), and both of them focus on tackling FIIF spurious correlations
(Assumption A.2). The theoretical guarantees of GIB follows the theory of information bottleneck (Tishby et al., 1999),
while GIB can not solve PIIF spurious correlations (Assumption A.3). As both FIIF and PIIF widely exist in realistic
scenarios, failing to solve either of them could result in severe performance degradation in practice (Arjovsky et al., 2019;
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Table 2. An overview of potential algorithms for OOD generalization on graphs.

Algorithm OOD Guarantee Regime F Known SCM Support
IRM (Arjovsky et al., 2019) Yes R Yes PIIF
IB-IRM (Ahuja et al., 2021) Yes R Yes PIIF&FIIF
EIIL (Creager et al., 2021) Yes R No PIIF
DANN (Ganin et al., 2016) N/A R Yes N/A
MatchDG (Mahajan et al., 2021) N/A R Yes FIIF
GroupDro (Sagawa* et al., 2020) N/A R Yes N/A
CNC (Zhang et al., 2022) N/A R No N/A
GIB (Yu et al., 2021) Yes g No FIIF
DIR (Wu et al., 2022¢) No g No FIIF
GOOD (Ours) Yes g No PIIF&FIIF

Ahuja et al., 2021; Aubin et al., 2021; Nagarajan et al., 2021). While for DIR, though as a generalization of Chang et al.
(2020) to graphs, can not provide any theoretical guarantees under FIIF spurious correlations as shown in Appendix D.4, nor
under PIIF spurious correlations.

GNN Extrapolation. Recently there is a surge of attention in improving the extrapolation ability of GNNs and apply them
to various applications, such as mathematical reasoning (Santoro et al., 2018; Saxton et al., 2019), physics (Battaglia et al.,
2016; Sanchez-Gonzalez et al., 2018), and graph algorithms (Tang et al., 2020; Velickovic et al., 2020; Xu et al., 2020;
Xhonneux et al., 2021). Xu et al. (2021b) study the neural network extrapolation ability from a geometrical perspective.
Han et al. (2021) improve OOD drug discovery by mitigating the overconfident misprediction issue. Knyazev et al. (2019);
Yehudai et al. (2021) focus on the extrapolation of GNNs in terms of graph sizes, while making additional assumptions
on the knowledge about ground truth attentions and access to test inputs. Bevilacqua et al. (2021) study the graph size
extrapolation problem of GNNs through a causal lens, while the induced invariance principle is built upon assumptions on
the specific family of graphs. Different from these works, we consider the GNN extrapolation as a causal problem, establish
generic SCMs that are compatible with several graph generation models, as well as, more importantly, different types of
distribution shifts. Hence, the induced the invariance principle and provable algorithms built upon the SCMs in our work
can generalize to multiple graph families and distribution shifts.

Additionally, Wu et al. (2022b) propose causal models as well as specialized objectives to extrapolate nodes with different
neighbors. However, their formulation is limited to node classification task and specific spurious correlation type. In contrast,
the induced invariance principle in Wu et al. (2022b), can be seen as a extension of GOOD for node classification, where
we cab identify an invariant subgraph from the K -hop neighbor graph of each node, and making predictions based on it, i.e.,
Y I E|GE C Gi° for node u. We leave specific formulation and implementation to future works.

C.3. More discussions on connections of GOOD with existing work

Although primarily serving for graph OOD generalization problem, our theory complements the identifiability study on
graphs through contrastive learning, and aligns with the discoveries in the image domain that contrastive learning learns to
isolate the content (C') and style (S) (Zimmermann et al., 2021; Kiigelgen et al., 2021). Moreover, our results also partially
explain the success of graph contrastive learning (You et al., 2020; Ma et al., 2021; You et al., 2021), where GNNs may
implicitly learn to identify the underlying invariant subgraphs for prediction.

On expressivity of graph encoder in GOOD. The expressivity of GOOD is essentially constrained by the encoders
embedded for learning graph representations. During isolating G from G, if the encoder can not differentiate two isomorphic
graphs G. and G.UG? where G? C G, then the featurizer will fail to identify the underlying invariant subgraph. Moreover,
the classifier will also fail if the encoder can not differentiate two non-isomorphic G.s from different classes. Thus, adopting
more powerful graph representation encoders into GOOD can improve the OOD generalization.

On GOOD and graph information bottleneck. Under the FIIF assumption on latent interaction, the independence
condition derived from causal model can also be rewritten as ¥ L S|C (similar to that in DIR (Wu et al., 2022¢) as they also
focus on FIIF), which further implies Y L S|G... Hence it is natural to use Information Bottleneck (IB) objective (Tishby
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et al., 1999) to solve for GG

min RGC(fc(C:YC))a

fe.g 12)

Go— g 1G.Y) ~1(600) (
Ge=g(G)CG

which explains the success of many existing works in finding predictive subgraph through IB (Yu et al., 2021). However, the
estimation of (G'C, G) is notoriously difficult due to the complexity of graph, which can lead to unstable convergence as
observed in our experiments. In contrast, optimization with contrastive objective in GOOD as Eq. 8 induces more stable
convergence.

On GOOD for node classifications. As the task of node classification can be viewed as graph classification based on the
ego-graphs of a node, our analysis and discoveries can generalize to node classification. More specifically, the invariance
principle for node classification can be implemented by identifying an invariant subgraph from the K -hop neighbor graph of
each node, and making predictions based on it, i.e., Y I E|G&° C G4 for node u (Wu et al., 2022b).

D. More Details about Failure Case Studies in Sec. 2.2

In this section, we provide details on failure case studies in Sec. 2.2. We first elaborate the empirical evaluation setting
where we construct a synthetic graph datasets to probe the behaviors of existing methods in OOD generalization on graphs.

D.1. More empirical details about failure case study in Sec. 2.2

To begin with, we construct 3-class synthetic datasets
based on BAMotif (Luo et al., 2020) and follow Wu
et al. (2022c¢) to inject spurious correlations between motif
graph and base graph during the generation. In this graph
classification task, the model needs to tell which motif the
graph contains, e.g., “House” or “Cycle” motif, as shown
in Fig. 5. We inject the distribution shifts in the training
data while keeping the test data and validation data with-
out the biases. For structure-level shifts, we introduce
the artificial bias based on FIIF, where the motif and the
base graph are spuriously correlated with a probability of
various bias. For mixed shifts, we additionally introduced

Training Data

0 iy
Y F

Testing Data

“House”

i}@ “House”

“Cycle”

attribute-level shifts based on FIIF, where all of the node
features are spuriously correlated with a probability of
various bias. The number of training graphs is 600 for
each class and the number of graphs in validation and test
set is 200 for each class. More construction details are
given in Appendix G.

For the GNN encoders, by default, we use 3-layer
GCN (Kipf & Welling, 2017) with mean readout, a hid-
den dimension of 64, and JK jump connections (Xu

Figure 5. Failure cases for existing methods. GNNs are required to
classify whether the graph contains a “house” or “cycle” motif, where
the colors represent node features. However, distribution shifts in
the training exists at both structure level (From left to right: “house”
mostly co-occur with a hexagon), attribute level (From upper to
lower: graphs nodes are mostly green colored if they contain “house”,
or blued colored if they contain “cycle”), and graph sizes, making
GNN:ss hard to capture the invariance. ERM can fail for leveraging the
shortcuts and predict graphs that have a hexagon or have mostly green
nodes as “house”. IRM can fail when testing data are not sufficiently
supported by the training data.

et al., 2018) at the last layer. During training, we use

a batch size of 32, learning rate of le — 3 with Adam

optimizer (Kingma & Ba, 2015), and batch normalization between hidden layers (Ioffe & Szegedy, 2015). Meanwhile, to
stabilize the training, we also use dropout (Srivastava et al., 2014) of 0.1 and early stop the training when the validation
accuracy does not increase till 5 epoch after first 20 epochs. All of the experiments are repeated 5 times, and the mean
accuracy as well as variance are reported and plotted. When using IRM objective (Arjovsky et al., 2019), as the environment
partitions are not available, we generate 2 environments with random partitions.

D.2. More discussions about failure case study in Sec. 2.2

In Fig. 6, 7, 8, 9, we investigate whether existing training objectives (ERM and IRM), adding more message passing, as
well as using expressive GNNs, can improve the OOD generalization ability on graphs. Here we also provide a additional
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discussion in complementary to the discussions on OOD generalization performance of ERM and IRM objectives in Sec. 2.2.

More concretely, we focus on answering the following question from multiple aspects.

Can better architectures improve OOD generalization of GNNs?

Training with ERM objective. As shown in Fig. 6, 7, 8, 9, we find that GNNs trained with the standard empirical risk
minimization (ERM) algorithm (Vapnik, 1991) are not able to generalize to OOD graphs. As the data biases grows stronger,
the performances of GNNs drop dramatically. Furthermore, when graph size shifts are mixed in the data, GNNs can have
larger variance at low data biases, indicating the instability of learning the desired relationships for the task. The reason is
that ERM tends to overfit to the shortcuts or spurious correlations presented in specific substructures or attributes in the
graphs (Geirhos et al., 2020). This phenomenon has also been shown to exist in GNNs equipped with more sophisticated
architectures such as attention mechanisms (Velickovic¢ et al., 2018), under graph size shifts (Knyazev et al., 2019).

Training with OOD objective. Meanwhile, as shown in Fig. 6, 7, 8, 9, OOD objectives primarily developed on Euclidean
data such as invariant risk minimization (IRM) (Arjovsky et al., 2019) also cannot alleviate the problem. On the con-
trary, IRM can fail catastrophically at non-linear regime if without sufficient support overlap for the test environments,
i.e., Uece, Supp(P?) € Ueecg,supp(P¢) (Rosenfeld et al., 2021). In addition to IRM, the failure would also happen for
alternative objectives (Krueger et al., 2021; Bellot & van der Schaar, 2020; Ahuja et al., 2021) as proved by Rosenfeld
et al. (2021). Besides, different distribution shifts on graphs can be nested with each other where each one can have distinct
spurious correlation type, e.g., FIIF or PIIF. OOD objectives will also fail seriously if either of the correlation types is not
supported (Aubin et al., 2021; Nagarajan et al., 2021). Moreover, non-trivial environment partitions or labels are required for
performance guarantee of these OOD objectives (Arjovsky et al., 2019; Krueger et al., 2021; Sagawa* et al., 2020; Ahuja
et al., 2021). However, collecting meaningful environment partitions of graphs requires expert knowledge about graph data.
Thus, the environment labels can be expensive to obtain and are usually not available (Morris et al., 2020; Dwivedi et al.,
2020; Hu et al., 2020). Alternative options such as random partitions tend not to alleviate the issue (Creager et al., 2021; Lin
et al., 2022), as it can be trivially deemed as mini-batching.

Adding more message passing turns. It is a common practice in GNNSs to denoise the signals by aggregating more
neighbors with higher layers, or enhance the expressive power with more powerful readout functions (Xu et al., 2018;
2019; Yang et al., 2021). Aggregating neighbor information with more layers to denoise the input signal, or enhancing
the expressivity with more powerful readout functions, are two common choices in GNNs to improve the generalization
ability (Xu et al., 2018; Li et al., 2018a; Xu et al., 2019; Yang et al., 2021). However, in the experiments next, we empirically
found that GCNs with more layers and more powerful readout operations are still sensitive to distribution shifts. In particular,
stacking more layers helps denoising certain shifts, while the OOD performance would drop more sharply when the bias
increases. Intuitively, if the spurious features from nodes cannot be eliminated by the denoising property of a deeper GNN,
they would spread among the whole graph more widely, which in turn leads to stronger spurious correlations. Besides, the
spurious correlations would be more difficult to be disentangled if there are distribution shifts at both structure-level and
attribute-level. Since the node representations from hidden layers can also encode graph topology features (Xu et al., 2019),
distribution shifts introduced through Z% and Z% will doubly mix at the learned features. In the worst case, the information
about Z§ and Z5 could be partially covered by or even replaced by Z5 and Z%;. This will make OOD generalization of
message passing GNNs trained through ERM much more difficult or even impossible. Besides, as the node representations
of 1 < ¢ < k-th layer can also encode graph topology features (Xu et al., 2019), which, if spuriously correlated with labels
through Z% and entangled with part of invariant node features, i.e., Z%, in the worst case, can greatly improve the difficulty
or even make the OOD generalization impossible for neighbor aggregation GNNs trained with ERM.

Using more expressive GNNs. Previous results on the expressivity of GNNs show that GNNs are limited to distinguish
isomorphic graphs at most as 1-WL/2-WL test can distinguish (Xu et al., 2019). After that, many follow-up variants are
proposed to improve the expressivity of GNNs (Morris et al., 2021). However, if the labels are spuriously correlated with
certain subgraphs, even the GNN has high expressivity can still be prone to distribution shifts. In a idealistic case, when
classifying a graph with a highly expressive GNN, it reduces to the linear or discrete feature case on the Euclidean regime.
In this case, there exists many evidences showing that neural networks can fail to generalize to OOD data without a proper
objective (Beery et al., 2018; DeGrave et al., 2021; Arjovsky et al., 2019; Sagawa* et al., 2020; Bengio et al., 2020; Krueger
et al., 2021; Creager et al., 2021; Koyama & Yamaguchi, 2020; Ahuja et al., 2021). Empirically, we use k-GNNs (Morris
et al., 2019) to verify the intuition and observe similar failures for this provably more expressive GNN as basic GNN
variants.
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D.3. More empirical results about failure case study in Sec. 2.2
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Figure 9. Failure of existing methods on SPMotif PIIF attribute shifts with graph size shifts.

To explore the behaviors of aforementioned methods against complicated distribution shifts on graphs, we first modify
construction method in Wu et al. (2022c¢) to construct dataset for Fig. 6, where only FIIF structure-level spurious correlations
are injected. Then we also inject FIIF attribute-level shifts, by setting the node attributes to constant vectors which is
spuriously correlated with the labels. Furthermore, in Fig. 7, graph size shifts are added, which is exactly the SPMotif
datasets used in DIR (Wu et al., 2022c). Besides, in Fig. 8, we can also change the FIIF attribute-level shifts to PIIF
attribute-level shifts, where we flip the labels by a probability of 5% and let the flipped label to be spuriously correlated with
the node features, following the PIIF SCM in Fig. 4. Graph size shifts can also be injected in this case, shown as Fig. 9.
Next, we summarize our findings from the experiments.

Observation I: All existing methods are sensitive to distribution shifts. From the Fig. 6, 7, 8, 9, we can observe that all
GNNss are sensitive to distribution shifts. As the intensity of spurious correlation grows, GNNs are more likely to overfit to
shortcuts presented either in the structure-level or attribute-level, which is similar to general deep learning models (Geirhos
et al., 2020).

Observation II: Higher variance also indicates unstable OOD performance. Although GNNs show certain robustness
against single distribution shifts, e.g., performances do not decrease sharply at the beginning in Fig. 6, when the spurious
correlation grows stronger, the OOD performance become more unstable, e.g., higher variance. The reason is that, GNNs
sometimes can directly learn about the desired information at some random initializations, since the task is relatively simple
compared to reality. Hence the performance will be highly sensitive to the quality of initialized points at the beginning.
Consequently, the performances from multiple runs would exhibit high variance. However, when the task becomes more
difficult, GNNs will consistently be prone to distribution shifts, and the variance will be smaller, as shown in experiments
(Sec. 4).

Observation III: Entangling more distribution shifts can degenerate more GNN performance. As implied by the graph
generation SCMs in Fig. 4, distribution shifts can happen at both structure-level and attribute-level, and each of them can
have different type of spurious correlation with the label. In Fig. 6, we can find that, when the attribute-level distribution
shifts are mixed, the performance will be worse and more unstable. When the graph size shifts are mixed, this phenomenon
will be more obvious, as shown in Fig. 7. This phenomenon also verifies the observations in Knyazev et al. (2019) that
attention mechanism in GNN is also sensitive to graph size shifts and can hardly learn the desired attention distributions
without further guidance. Moreover, when the structure-level and attribute-level shifts have different spurious correlation
types, i.e., when FIIF structure-level shifts and PIIF attribute-level shifts are both presented, the performance drop will be
more serious, by comparing Fig. 6 to Fig. 8, as well as Fig. 7 to Fig. 9.

Observation I'V: Using more powerful architectures can not improve the OOD performance. From the sub-figures (b)
and (c) in Fig. 6, 7, 8, 9, we can also observe that neither adding more message passing turns nor using more expressive
GNN architectures can be immune to distribution shifts. On the contrary, they also exhibit similar behaviors like basic GNN
architectures. Specifically, adding more message passing runs show certain robustness against distribution shifts since they
are more likely to learn the desired information during the optimization (Xu et al., 2021a). However, when the intensity of
spurious correlation grows stronger, deeper GNNs are more likely to overfit to shortcuts hence their performances will drop
more sharply. On the other hand, using provably more expressive GNN architectures can not improve the OOD performance,
either. In Fig. 6, 7, 8, 9 we use 1-2-3-GNN following the algorithm of k-GNNs which is provably more expressive than
2-WL test (Morris et al., 2019). When there are no graph size shifts, k-GNNs will have higher performance at the beginning.
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When there are graph size shifts, k-GNNs will have a lower initial performance at the beginning. Then, as the spurious
strength grows, k-GNNs can suddenly become seriously unstable, though k-GNNs can have higher averaged performance,
which reflects unsatisfactory OOD performance as Observation II implies. When the intensity of spurious correlations grows
even stronger, similar to deeper GNNs, OOD performances of k-GNNs will be more unstable and go down to similar level
as that of normal GNN architectures. Hence, it calls for better optimization objectives as well as a suitable architectures to
help improve the OOD generalization performance.

Beyond the empirical studies in previous section, we aim to accompany more formal discussions for explaining the failures
of existing optimization objectives and architectures in the next sections.

D.4. Theoretical discussions for failure case study in Sec. 2.2

A motivating example. To begin with, we follow Ahuja et al. (2021) to introduce a formal example on the failures of GNNs
optimized with ERM or IRM (Vapnik, 1991; Arjovsky et al., 2019) via a linear binary classification problem:

Definition D.1 (Linear classification structural equation model (FIIF)).
Y = (wy, - C) & N, N ~Ber(q), N L (C,5),
X « 5(C,9),
where w;;, € R with ||w;, || = 1 is the labeling hyperplane, C' € R", S € R"s are the corresponding invariant and
varying latent variables, IV is Bernoulli binary noise with a parameter of ¢ and identical across all environments, & is the
XOR operator, S is invertible.

Given data generation process as Assumption A.1, and latent space interaction as Assumption A.2 or A.3, and strictly
separable invariant features A.5, consider a k-layer linearized GNN p o h using mean as READOUT for binary graph
classification, if Ueeg, supp(P®) € Uecg, supp(P°):

(i) For graphs features generated as Definition D.1, p o h optimized with ERM or IRM will fail to generalize OOD (Eq. 11)
almost surely;

(i) For graphs with more than two nodes, globally same node features generated as Definition D.1, and graph labels that
are the same as global node labels, p o h optimized with ERM or IRM will fail to generalize OOD (Eq. 11) almost
surely;

For graph classification, if the number of nodes is fixed to one, it covers the linear classification as above. When

Ueeg, supp(P¢) € Uceg,supp(IP?), it implies the S from training environments &, does not cover S from testing envi-

ronments, while C can be covered. Moreover, the condition of strictly separable training data now can be formulated as
*

mingey, ., (ccge) sgn(wy, - C)(wj, - C) > 0. Recall that ERM trains the model by minimizing the empirical risk (e.g.,
0-1 loss) over all training data, and IRM formulates OOD generalization as:

1
min— R¢(ho
0.fe |Exl Z (hep)
c€&y (13)

s.t. p € argmin R°(h o p), Ve € &;.
p

*
inv?

However, both ERM and IRM can not enable OOD generalization, i.e., finding the ground truth w
3 from Ahuja et al. (2021):

Theorem D.2 (Insufficiency of ERM and IRM). Suppose each e € &,y follows Definition. D.1, C are strictly separable,
bounded and satisfy the support overlap between &, and &, and S are bounded, if S does not support the overlap, then
both ERM and IRM fail at solving the OOD generalization problem.

following the Theorem

The reason is that, when C' from all environments are strictly separable, there can be infinite many Bayes optimal solutions
given training data {G®, y°}.ce,, while there is only one optimal solution that does not rely on .S. Hence, the probability of
generalization to OOD (finding the optimal solution) tends to be 0 in probability.

As for case (ii), when the GNN uses mean readout to classify more than one node graphs, assuming the graph label is
determined by the node label and all of the nodes have the same label that are determined as Definition D.1, then GNN
optimized with ERM and IRM will also fail because of the same reasons as case (i).
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Discussions on the failures of previous OOD related solutions. First of all, for IRM or similar objectives (Sagawa*
et al., 2020; Krueger et al., 2021; Ahuja et al., 2021; Bellot & van der Schaar, 2020) that require environment information
or non-trivial data partitions, they can hardly be applied to graphs due to the lack of such information. The reason is
that obtaining such information can be expensive due to the abstraction of graphs. Moreover, as proved in Theorem
5.1 of Rosenfeld et al. (2021), when there is not sufficient support overlap between training environments and testing
environments, the IRM or similar objectives can fail catastrophically when being applied to non-linear regime. The only
0OOD objective EIIL (Creager et al., 2021) that does not require environment labels, also rely on similar assumptions on the
support overlap. We also empirically verify their failing behaviors in our experiments.

Moreover, since part of explainability works also try to find a subset of the inputs for interpretable prediction robustly against
distribution shifts. Here we also provide a discussion for these works. The first work following this line is INVRAT (Chang
et al., 2020), which develops an information-theoretic objective (we re-formulate it to suit with OOD generalization problem
on graphs):

minmax R(g o fo,¥) + M(R(g o fe, ) = Re(g o [, Y, E)). (14)
However, it also requires extra environment labels for optimization that are often unavailable in graphs. Besides, the
corresponding assumption on the data generation for guaranteed performance is essentially PIIF if applied to our case, while
it can not provide any theoretical guarantee on FIIF.

We also notice a recent work, DIR (Wu et al., 2022c), as a generalization of INVRAT to graphs while studying FIIF spurious
correlations, that proposes an alternative objective which does not require environment label:

minEy[R(h,Y|do(S = s))] + Avarg({R(h, Y |do(S = s))}). (15)

However, the theoretical justification established for DIR (Theorem 1 to Corollary 1 in Wu et al. (2022c¢)) essentially
depends on the quality of the generator g which can be prone to spurious correlations. Thus, DIR can hardly provide any
theoretical guarantees when applied to our case, neither for FIIF nor PIIF. In experiments, we empirically find the unstable
and relatively high sensitivity of DIR to spurious correlations, which verifies our finding. More details about empirical
behaviors of DIR can be found in Appendix G.

In contrast to DIR, GIB (Yu et al., 2021) that focuses on discovering a informative subgraph for explanation, essentially
can provide theoretical guarantees for FIIF spurious correlations. Theoretically, (we copy the discussion in Appendix F
here to provide an overview of relationships between GIB and DIR.) Under the FIIF assumption on latent interaction, the
independence condition derived from causal model can also be rewritten as Y L S|C (similar to that in DIR (Wu et al.,
2022c) as they also focus on FIIF), which further implies Y 1L .S \éc. Hence it is natural to use Information Bottleneck (IB)
objective (Tishby et al., 1999) to solve for G..:

min RGc(fc(éC))7
fe:9 16)
st.Ge = argmax I(G,,Y) —I(G.,G), (
Ge=g(@)CG

which explains the success of many existing works in finding predictive subgraph through IB (Yu et al., 2021). However, the
estimation of 1 (éc, G) is notoriously difficult due to the complexity of graph, which can lead to unstable convergence as
observed in our experiments. In contrast, optimization with contrastive objective in GOOD as Eq. 8 induces more stable
convergence.

E. Theory and Discussions

In this section, we provide proofs for propositions and theorems mentioned in the main paper.

E.1. Challenges of OOD generalization on graphs.

From the aforementioned analysis, we can summarize some key challenges revealed by the failures of both existing
optimization objectives and GNN architectures. In particular, we are facing two main challenges a) Distribution shifts on
graphs are more complicated where different types of spurious correlations can be entangled via different graph properties;
b) Environment labels are usually not available due to the abstract graph data structure.



Invariance Principle Meets Out-of-Distribution Generalization on Graphs

E.2. Proof for theorem B.2 (i)

Theorem E.1 (GOODvVI1 Induces Invariant GNNSs). Given a set of graph datasets { D¢}, and environments &,y that follow
the same graph generation process in Sec. 2.1, assuming that (a) aen G and f in Assumption A.1 are invertible, (b) samples
from each training environment are equally distributed, i.e., = |Ds¢|, Ve € € &y, ifVGe, |Ge| = S¢, then a GNN f.o g
solves Eq. 7, is an invariant GNN (Def. B.1).

Proof. We re-write the objective as follows:

max [(Ge;Y), st.Ge € argmax  I(Ge;G.|Y), {17
ferg Ge=g(G),|Gc|<se

where G, = g(@),G. = g(G) and G ~ P(G|Y), i.e., G and G have the same label.

The proof of Theorem E.1 is essentially to show the estimated G, through Eq. 17 is the underlying G, then the maximizer
of I(G.;Y) in Eq. 17 can produce most informative and stable predictions about Y based on G, hence is an invariant GNN
according to Definition. B.1.

In the next, we are going to take a information-theoretic view of the first term I(G.;Y) and the second term I(G.; G.|Y)
to conclude the proof. We begin by introducing the following lemma:

Lemma E.2. Given the same conditions as Thm. E.1, 1(G.;Y') is maximized if and only if I(Ge; Y |E = ) is maximized,
Ve € &,.

The proof for Lemma E.2 is straightforward, given the condition that samples from each training environment are equally
distributed, i.e.,|Ds| = |Ds|, Vé, € € &. Obviously, G, = G. is a maximizer of I(G;Y) = I(C;Y) = H(Y), since
fgcen : C — G, is invertible and C' causes Y. However, there might be some subset G C (s from the underlying G that
entail the same information about label, i.e., I(GZ U G?;Y) = I(G.;Y) where G. = G? U G? and G2 = G. N G,. For
FIIF (Assumption 4(b)), it can not happen otherwise, let G, = G. — G2, then we have:

I(éc;Y)ZI(GpUG’S’;Y I(GPUGLY) = I(G.;Y)

(
(Gp Y)+I(G;Y|GP)
(G

) =
I(GP:Y) + I(GP;Y|GP) =1
I(GLY|GY) = (G Y|GY) (18)
H(Y|G?) - H(Y|GE, GY) = H(Y\Gi)*H(YIG’C’vGi)
H(Y|G?) — H(Y|GE, GY) = H(Y|GY),
H(Y|G.,G?) =0,

where the second last equality is due to C' — Y and the invertibility of fg,, : C — G, inFIIE, i.e., H(Y|C) = H(Y|G.) =
H(Y|G?,GL) = 0. However, in PIIF, it can not hold since conditioning on G2, G? can not determine Y, since S £ Y|C.
In other words, G £ Y|G.., which means G can imply some information about Y that is equivalent to I(GL; Y|GE).

To avoid the presence of spuriously correlated G5 in G, we will use the second term to eliminate it:

max I(Ge; G|Y),
fesg ) o (19)
— H(G.|Y) - H(G.|G.,Y),

where G. = ¢(G), G. = g(G) are two positive samples drawn from the same class (i.e., condition on the same V).
Since the all of the training environments are equally distributed, maximizing I(G.; G.|Y') is essentially maximizes
I(G.,E =¢;G.,E =¢|Y),Vé, e € &, Hence, we have:

=I(G.,E=¢;,G.,E=¢|Y) (20)
=H(G,,E=¢]Y)—H(G,E =¢|G,,E=¢,Y).

We claim Eq. 20 can eliminate any potential subsets in the estimated Ge.
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Otherwise, suppose there are some subsets Gp C G,
and G C G, contained in the estimated GC, G., where GC

G, G, be the corresponding underlying G s for G.,G.. \

Let G* and G be the ground truth invariant subgraph Gcs . - _

of Gand G, GL = G — G, and GL. = G* — G, be the Gl G’p G'p Gl
c c s =

left (un-estimated) subsets from corresponding ground
truth G.s, and G2 = G* — él and G2 = G — G.,
be the complement, or equivalently, the partial G* G*
that are estimated in GC7 Ge, respectlvely We can also

define similar counterparts for Gr,: GS’ G are the P artial Figure 10. Illustration of the notation. G. and G are two disjoint

GS7 Gss contained i mn theﬁStlmated Ga Gc while Géa Gé sets. G may contain certain subsets from G.. and G. The subsets
are the left subsets G, G5, respectively. from G.. and G, contained in G, are denoted as G¥ and G%, respec-
tively. While the left subsets in G and G are denoted as G and

Recall the constraint that |G| = Scs hence if G” C G, i
G, respectively.

then a corresponding Gl G — GE will be replaced by
G’; in G.. In this case, we have:

— HGPUGEIE =¢,Y) 1)

where the second equality is due to £ = ¢ is determined so that H(E = é|G.,Y) = 0. Compared Eq. 21 to that when
G, = G’ we have the entropy change as:

H(G.,E=¢lY)=H(G.,E=¢|Y)—H(G:,E=¢|Y), o)
= H(GE|GE,E =¢,Y) — H(GLGE,E = ¢,Y).

Let e = H(GE|GE, E = ¢,Y). In a idealistic setting, when the noise of the generation process S := fspu(Y, E) in PIIF
tends to be 0, i.e., € — 0, S is determined conditioned on E'| Y, hence GG and any subsets of G are all determined. Then, it

suffices to know that in Eq. 22, H (GE |G =¢,Y) = 0while H(GL|GZ, E = ¢,Y) > 0 since G can not be determined
when given G2, E = ¢, Y. Thus, when some subset from G, is included in G, it will minimize H (Gc, E=¢Y). 1
the next, we will show how ¢ = (G§|GC, = ¢,Y) can be cancelled thus leading to a smaller H(G., E = é[Y), by

considering the second term H(G‘c7 E= é|éc, E=¢Y).

As for H (éc, E= é|éc, E = ¢,Y), without loss of generality, we can divide all of the possible cases into two:

(i) One of G’c and éc contains some subset of G, i.e., Gc contains some G% C Cf

(i) Both G, and G.. contain some G2 C G, and G C G, respectively.

For (i), we have:

H(G.,E=¢|G,,E=¢Y)=H(G2,GE E = é|G,,E=¢,Y) 03
= H(G?|G.,E=¢,Y,GE,E =¢) + H(GV,E = ¢|Go, E=¢,Y),
Thus, H(GZ|G., E = ¢,Y,GL, E = ¢) = 0 and Thus, we have
AH(G., E=é|Ge, E=¢,Y)=H(G.,E=¢|G.,,E=¢,Y)— H(G*,E =¢|G.,E =¢,Y),
= H(G?|G., E=¢,Y,G. E =¢) 24)
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Combing AH (G, E = é|Y'), we have:

AI(Go,E=¢;,G., E=¢|Y) = AH(G,,E =¢|Y) — AH(G,,E = ¢|G.,E=¢,Y)

- {H(d’;|G€,E —&,Y)— H(C?G E=¢,Y,C8 F = é)}
. o ) 25)
+ {—H(GQGQ,E —6Y)+ H(GUG..E=¢Y,ChE=¢ } :
= —H(GLGE,E=¢,Y)+ H(GL|G,,E =&,Y,GE,E = ¢),

where the last equality is because of the independence of (ﬁ’s’ between G., E = ¢ conditioned on Y, E = é. Since
conditioning will lower the entropy for both discrete and continuous variables (Cover & Thomas, 2006; Yeung, 2008), we
have:

AI(G.,E=¢,G.,E=¢|Y) <0, (26)

which implies the existence of é€ in GC will lower down the second term in Eq. 17 for the case (i).

For (ii), we have:

H(Ge, E=¢|Ge, E=6Y)=H(GE, G, E = ¢|GP,GE,E = &,Y)
= H(G?|GE,GP,E =¢,Y, GC,E é) 27)
+ H(GP,E=¢|GE,GE,E=¢,Y),
Similar to (i), H(é§’|é€, GY.E=¢Y,GYE = €) can be cancelled out with H(Cf’;\éﬁ', E = ¢é,Y). Then, we have:
AI(Go,E=¢;G.,E=¢|Y) = AH(G,,E =¢|Y) — AH(G,, E = ¢|G.,E=¢,Y) 08)

~H(GLGE,E=¢,Y)+ H(GL|GE,GP,E = &,GE,Y,E = ¢).

Since additionally conditioning on G% in H (C:”C, E =¢|G?,GE, E = &,Y) can not lead to new information about élc, we

e H(GLG?,GE,E =¢,G2,Y,E = ¢é) = H(CE*@@,E =& GEY,E =¢) 00
H(GLGE,Y,E = ¢),

which follows that AI(G,, E = é;G., E = é|Y) < 0.

To summarize, the ground truth G, is the only maximizer of the objective (Eq. 17), hence solving for the objective (Eq. 17)

can elicit an invariant GNN.

E.3. Proof for theorem B.2 (ii)

Theorem E.3 (GOODV2 Induces Invariant GNNs). Given a set of graph datasets {D*}. and environments &, that follow
the same graph generatlon process in Sec. 2.1, assumzng that (a) gen and g,e,, in Assumption A.1 are invertible, (b) samples

De| = |Dgl, Vé,é € &, a GNN f. o g solves Eq. 7, is an

invariant GNN (Def. B.1).

Proof. We re-write the objective as follows:

max I(Ge;Y)+I(Gg;Y), st.Go e argmax  I(Go; Go|Y),
fer Ge=9(G),Ge=g(G) (30)

I(Gs;Y) < I(G;Y), Gy =G — g(G).
where G, = g(@),G. = g(G) and G ~ P(G|Y), i.e., G and G have the same label.

Similar to the proof for Theorem E.1, to prove Theorem E.3 is essentially to show the estimated G, through Eq. 30 is the
underlying G, hence the minimizer of Eq. 30 elicits an invariant GNN predictor.

In the next, we also begin with a lemma:
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Lemma E.4. Given data generation process as Theorem E.3, for both FIIF and PIIF, we have:
I(C;Y) = I(S;Y),
hence I(G.;Y) > I(G4;Y).
Proof for Lemma E.4. For both FIIF and PIIF, Assumption A.5 implies that H(C|Y') < H(S|Y). It follows that I(C;Y)

H(Y)-H(C|Y)> H(Y)=H(S|Y) = I(S;Y). Then, since f&s : C — G. is invertible, we have I(G;Y) = I(C;Y)
1(8:Y) > I(G,:Y).

O

Gin:n Lemma E.4, we know GC at leasf contains some subset of the underlying GG, otherwise the constraint I (C:’S; Y) <
I(G.;Y) will be violated since G. C G in this case.

Assuming there are some subset of G5 contained in G., without loss of generality, we can divide all of the possible cases
about GG, into two:

(i) G, only contains a subset of the underlying G;

(i1) G. contains a subset of the underlying G as well as part of the underlying G;

Before the discussion, let us inherit the notations of sub-
sets of G, G from the proof for Theorem E.1: Let Cjz G‘
and G} be the ground truth invariant subgraph G.s of
Gand G, GL = Gx — G, and GL. = G — G, be the G GS
left (un- estlmated) subsets from corresponding ground
truth Gs, and G? = Gx — Gl and GE = G* — Gl be \

the complement, or equivalently, the partial G, G* that = 6?9 E;TJ &\l
are estimated in GC7 G., respectively. Similarly, Gé’ .GP GC c S 5

are the partlal Gb, G s contained in the estimated GC, G.
while Gl Gl are the left subsets G, G, respectively.

First of all, case (i) cannot hold because, when maximiz-

ing I(Ge; Ge|Y), if 3GL = G* G, as shown in the Figure 11. Illustration of the notation for estimated G from G. G.
proof for Theorem E.1, including Gl into G can always and G are two disjoint sets. GG may contain certain subsets from G..
enlarge I(G.; G.|Y), while not affecting the optimality ~ and G.. The subsets from G and G contained in G. are denoted
of [(G’g, Y) + I(Gm Y) by re-distributing Gl from G, as G¥ and G%, respectively. While the left subsets in G and G

to G Consequently, G* must be included in Gc ie., are denoted as G and GL, respectively. Similar notations are also
G* C G applicable for the estimated G from G.
c = c*

As for case (ii), recall that, by the condition of equally distributed training samples from each training environment,
maximizing I(G.; G.|Y) is essentially maximizing I(G., E = é;G., E = é|Y), Vé, é € &, hence, we have:

max I(Gg; Go|Y),
g fe

=I(G., E=¢G., E=¢|Y) 3D

(G, E=¢|Y) = H(E =¢|G..,Y) + H(G.JE =¢,Y)
= H(G*UGEIE =¢,Y)
. . (32)
= H(G:|Y) + H(GE|G:, E =¢,Y)
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where the second equality is due to E = € is determined. Compared to the case that G = Cﬁz, we have:

AH(G.,E=¢]Y)=H(G,,E=¢|Y)— H(G:, E =¢|Y),

ot 4 (33)
= H(GY|G:,E =¢,Y).
Then, as for H (GC, E = é|éc, E = ¢,Y), without loss of generality, we can divide all of the possible cases into two:
(a) G. contains some G? C Gy
(b) Both G, and G, contain some é§ C G, and é’s’ C G, respectively.
For (a), we have:
H(G.,E=¢|Ge,E=¢,Y) = H(G*,GY,E = ¢|G.,E =¢,Y) )
= H(GY|G., E=¢,Y,G*,E = ¢é)+ H(G*,E = ¢|G., E =&,Y),
Similarly to the proof for Theorem E.1, when considering AI(G.; G.|Y), the effects of H(C§€| 1 E=¢Y,G:,E=¢)
is cancelled out by H(G%|G*, E = ¢,Y). Hence, we have:
AI(Ge; G|Y) = 0.
For (b), we have: ~ ~
H(G.,E=¢G,,E=¢,Y)=H(G*,G,,E =¢é|G*,GE,E =¢,Y)
= H(G?|G*,G?,E =¢,Y,G*,E = ¢) (35)

+ H(G*|G*,GE,E =¢6,Y,E = é),

Similarly, H(G:€|(§§, GE E =&,Y,G*, E = é) = 0 can also be cancelled out by H(cﬁ?;\ég, E = ¢,Y). Moreover, for
H (Cf’g \éz, GY E =¢,Y,E = é), GE can not bring no additional information about @:, when conditioning on Gz, Y,E=e.
Hence, we also have:

AI(Ge; G|Y) = 0.

To summarize, when maximizing 1 (éc; GC|Y), including any éﬁ’ - C:“; can not bring additional benefit while affecting the
optimality of I(G;Y) 4+ I(G.;Y). More specifically, when considering the changes to I(G;Y) + I(G.;Y), VG C G,
we have

(G~ G —GhY) < I(G - GiY), VGP C Gy,

while I(Y; G*,G?) = I(Y; G#) + I(Y; GE|G*), Ve € &;. Consequently,

AI(G:Y) + (G Y) = —I(GEY|GL) + 1(GE; Y|G)

. . . (36)

= —I(GE;Y) + I(GE;Y|Gx) < 0.
Hence, only the underlying G. is the solution to Eq. 30, which implies that solving for the objective (Eq. 30) can elicit an
invariant GNN.

F. Details of Prototypical GOOD Implementation

In fact, the GOOD framework introduced in Sec. 3 can have multiple implementations. We choose interpretable archi-
tectures in our experiments for the purpose of concept verification. More sophisticated architectures can be incorporated.
Experimental results in Sec. 4 also demonstrates that, even equipped with basic GNN architectures, GOOD already has the
excellent OOD generalization ability, hence it is promising to incorporate more advanced architectures from the prosperous
GNN literature.
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We now introduce the details of the architectures used in our experiments. Recall that GOOD decomposes a GNN model
for graph classification into two modules, i.e., a featurizer: g : G — G, and a classifier f. : G. — ). Specifically, for the
implementation of Featurizer, we choose one of the common practices GAE (Kipf & Welling, 2016) for calculating the
sampled weights for each edge. More formally, the soft mask is predicted through the following equation:

7z = GNN(G) € RnXh7 M = O'(ZZT) c R™*".

If a sampling ratio s, is predetermined, we sample s. of total edges with the largest predicted weights as a soft estimation of
G.. Then, the estimated G, will be forwarded to the classifier fe for predicting the labels of the original graph. Although
Theorem E.1 assumes s.. is known, in real applications we do not know the specific s.. Hence, in experiments, we select s,
according to the validation performance. To thoroughly study the effects of I (st; Y’) comparing to GOODVI, we stick
to using the same s. and sampling process for GOODv2, while GOODvV2 essentially requires less specific knowledge
about ground truth r. hence achieving better empirical performance. Moreover, once the sampled edges are determined, the
classifier GNN can take either the original feature of the input graph or the learned feature from the featurizer as the new
node attributes for G... We select the architecture according to the validation performance from some random runs.

For the implementation of the information theoretic objectives, we will use GOODvV2 for elaboration while the implementa-
tion of GOODvV1 can be obtained via removing the third term from GOODv2. Recall that GOODv?2 has the following
formulation:

max 1(Ge;Y) + I(Gs;Y), st. G, € arg max I(Ge; G|Y),
ferg Ge=g(G),Ge=g(&) (37)

I(GS;Y) < I(GC;Y)7 st =G _g(G)'

where G, = ¢(G), G, c=g(G)and G ~ P(G|Y), i.e., G and G have the same label. In Sec. B.4, we introduce a contrastive
approximation for I(G.; G.|Y):
(G‘ G ¥) ~ e?ha, he,)
I(G;G.lY)~E log (38)
’ {Ge,Ge Py (GIY=Y) 5 M _¢(hg hgi)’
e O B DD (hachar)

where positive samples (GC, GC) are the extracted subgraphs of graphs that have the same label of G, negative samples are
those with different labels, P, (G|Y = Y) is the pushforward distribution of P(G|Y = Y') by featurizer g, P(G|Y =Y)
refers to the distribution of G given the label Y, h , h¢ , hei are the graph presentations of the estimated subgraphs,

and ¢ is the similarity metric for the graph presentations. As M — oo, Eq. 38 approximates | (Gc; GC|Y) which can be
regarded as a non-parameteric resubstitution entropy estimator via the von Mises-Fisher kernel density (Ahmad & Lin, 1976;
Kandasamy et al., 2015; Wang & Isola, 2020).

While for the third term I(G;Y") and the constraint I(G;Y) < I(G.;Y), a straightforward implementation is to imitate
the hinge loss:

I(@.Y) ~ xRg, I(Rg, < Rg,), (39)

where NV is the number of samples, I is a indicator function that outputs 1 when the interior condition is satisfied otherwise
0,and R and R _are the empirical risk vector of the predictions for each sample based on G, and G, respectively. One
can also formulate Eq. 37 from game-theoretic perspective (Chang et al., 2020).

Finally, we can derive the specific loss for the optimization of GOODvV2 combining Eq. 38 and Eq. 39:
e¢(hdc7hf¥c)

elha,he,) 4 ZZM €¢(hdchcé)

R, + kg, c.)~p,(cly-y) 108
{GLHL ~Py (GIY#Y)

1
+ B85 Ra, URg, < Rg,),

(40)

where R , R are the empirical risk when using G’c, Gy to predict Y through the classifier. Typically, we use a additional
MLP downstream classifier p, for G, in the classifier GNN. hG;C is the graph representation of G, which can be induced
from the GNN encoder either in the featurizer or in the classifier. cv, 3 are the weights for I(G.; G.|Y) and I(G;Y'), and ¢
is implemented as cosine similarity. The optimization loss for GOODvI1 merely contains the first two terms in Eq. 40.

The detailed algorithm for GOOD is given in the Algorithm 1, assuming the % is obtained via the graph encoder in f.
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Algorithm 1 Pseudo code for GOOD framework.
Input: Training graphs and labels Dy, = {G;, Y;}¥ |; learning rate [; loss weights «, 3 required by Eq. 40; training
epochs e; batch size b;
Randomly initialize parameters of g, f;

fori =1toedo
Sample a batch of graphs {G7,Y7}0_,;

Estimate the invariant subgraph for the batch: {GZ}%_, = g({G7,y7}5_,);

Make predictions based the estimated invariant subgraph: {YJ ?:1 = f.({G ;’-:1);
Calculate the empirical loss R with {yAJ }?:1;
Fetch the graph representations of invariant subgraphs from f. as {h Gi §=1§

Calculate the contrastive loss R, with Eq. 38, where positive samples and negative samples are constructed from the
batch; . .
Obtain G, for the batch: {Gé 2:1 ={G7 - GI ;’-:1;

Make predictions based the G: {Y7 2:} = f.({G2 .’7’-:1);

Calculate the empirical loss R with {7 2-:1, and weighted as Eq. 39;

Update parameters of g, f. with respectto R; + aR. + SR as Eq. 40;
end for

G. Full Experimental Results and Settings

In this section, we provide more details about the experimental results and settings in complementary to Sec. 4, including the
full empirical results and analysis, dataset preparation, dataset statistics, implementations of baselines, selection of models
and hyperparameters as well as evaluation protocols.

G.1. Full experimental results and analysis

Datasets. We use the SPMotif datasets from DIR (Wu et al., 2022¢) where artificial structural shifts and graph size shifts are
nested (SPMotif-Struc). Besides, we construct a harder version mixed with attribute shifts (SPMotif-Mixed). To examine
GOOD in real-world scenarios with more complicated relationships and distribution shifts, we also use DrugOOD (Ji et al.,
2022) from Al-aided Drug Discovery with Assay, Scaffold, and Size splits, convert the ColoredMNIST from IRM (Arjovsky
et al., 2019) using the algorithm from Knyazev et al. (2019) to inject attribute shifts, and split Graph-SST (Yuan et al., 2020)
to inject degree biases. To compare with previous specialized OOD methods for graph size shifts (Yehudai et al., 2021;
Bevilacqua et al., 2021), we use the datasets in Bevilacqua et al. (2021) that are converted from TU benchmarks (Morris
et al., 2020).

Baselines and our methods. Besides the ERM, we also compare with SOTA interpretable GNNs, GIB (Yu et al., 2021),
ASAP Pooling (Ranjan et al., 2020), and DIR (Wu et al., 2022c¢), to validate the effectiveness of the optimization objective
in GOOD. We use the same selection ratio (i.e., s.) for all models. On the other hand, to validate the effectiveness of
the decomposition in GOOD, we compare GOOD with SOTA OOD objectives including IRM (Arjovsky et al., 2019),
v-Rex (Krueger et al., 2021) and IB-IRM (Ahuja et al., 2021), for which we apply random environment partitions. We also
compare GOOD with EIIL (Creager et al., 2021) and CNC (Zhang et al., 2022) that does not require environment labels,
where CNC (Zhang et al., 2022) has a more sophisticated contrastive sampling strategy for combating subpopulation shifts.

OOD performance on structure and mixed shifts. In Table 3, we report the test accuracy of each method, where we omit
GIB due to its poor convergence. Different biases indicate different strengths of the distribution shifts. Although the training
accuracy of most methods converge to more than 99%, the test accuracy decreases dramatically as the bias increases and as
more distribution shifts are mixed, which concurs with our discussions in Sec. 2.2 and Appendix D. Due to the simplicity
of the task as well as the relatively high support overlap between training and test distributions, interpretable GNNs and
OOD objectives can improve certain OOD performance, while they can have high variance since they donot have OOD
generalization guarantees. In contrast, GOODv1 and GOODv2 outperform all of the baselines by a significant margin up
to 10% with lower variance, which demonstrates the effectiveness and excellent OOD generalization ability of GOOD.
More analysis and results on real-world datasets are given in Appendix G.
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Table 3. OOD generalization performance on structure and mixed shifts for synthetic graphs.

SPMoTIE-STRUC T SPMOTIF-MIXED

BIAS=0.33 BIAS=0.60 BIAS=0.90 BIAS=0.33 BIAS=0.60 BIAS=0.90 AVG
ERM 59.49 (3.50)  55.48 (4.84)  49.64 (4.63) | 58.18 (4.30) 49.29(8.17) 41.36(3.29) | 52.24
ASAP 64.87 (13.8)  64.85(10.6) 57.29 (14.5) | 66.88(15.0) 59.78 (6.78)  50.45(4.90) | 60.69
DIR 58.73 (11.9)  48.72(14.8)  41.90(9.39) | 67.28 (4.06) 51.66 (14.1)  38.58(5.88) | 51.14
IRM 57.15(3.98)  61.74 (1.32)  45.68 (4.88) | 58.20(1.97)  49.29 (3.67)  40.73(1.93) | 52.13
V-REX 54.64 (3.05) 53.60(3.74) 48.86(9.69) | 57.82(5.93) 48.25(2.79) 43.27(1.32) | 51.07
EIIL 56.48 (2.56)  60.07 (4.47)  55.79(6.54) | 53.91(3.15) 48.41(5.53) 41.75(4.97) | 52.73
IB-IRM 58.30 (6.37)  54.37(7.35) 45.14(4.07) | 57.70 (2.11)  50.83(1.51)  40.27 (3.68) | 51.10
CNC 70.44 (2.55)  66.79 (9.42)  50.25(10.7) | 65.75(4.35) 59.27(5.29) 41.58(1.90) | 59.01
GOODvV1 | 71.07 (3.60) 63.23(9.61) 51.78(7.29) | 74.35(1.85) 64.54 (8.19)  49.01(9.92) | 62.33
GOODvV2 | 77.33(9.13)  69.29 (3.06) 63.41(7.38) | 72.42(4.80) 70.83(7.54) 54.25(5.38) | 67.92

THigher accuracy and lower variance indicate better OOD generalization ability.

Table 4. OOD generalization performance on complex distribution shifts for real-world graphs.

DATASETS DRUG-ASSAY DRUG-SCA DRUG-SIZE CMNIST-sp GRAPH-SST5 TWITTER AVG (RANK)]\
ERM 71.79 (0.27) 68.85(0.62)  66.70 (1.08) 13.96 (5.48) 43.89(1.73)  60.81 (2.05) 54.33 (6.00)
ASAP 70.51 (1.93) 66.19 (0.94)  64.12 (0.67) 10.23 (0.51) 44.16 (1.36)  60.68 (2.10) 52.65 (8.33)
GIB 63.01 (1.16) 62.01 (1.41)  55.50(1.42) 15.40 (3.91) 38.64 (4.52)  48.08 (2.27) 47.11 (10.0)
DIR 68.25 (1.40) 63.91(1.36)  60.40 (1.42) 15.50 (8.65) 41.12 (1.96)  59.85(2.98) 51.51(9.33)
IRM 72.12 (0.49) 68.69 (0.65)  66.54 (0.42) 31.58 (9.52) 43.69 (1.26)  63.50(1.23) 57.69 (4.50)
V-REX 72.05 (1.25) 68.92(0.98)  66.33(0.74) 10.29 (0.46) 43.28 (0.52)  63.21(1.57) 54.01 (6.17)
EIIL 72.60 (0.47) 68.45 (0.53)  66.38 (0.66) 30.04 (10.9) 42.98 (1.03)  62.76 (1.72) 57.20 (5.33)
IB-IRM 72.50 (0.49) 68.50 (0.40)  66.64 (0.28) 39.86 (10.5) 40.85(2.08)  61.26(1.20) 58.27 (5.33)
CNC 72.40 (0.46) 67.24 (0.90)  65.79 (0.80) 12.21 (3.85) 42.78 (1.53)  61.03 (2.49) 53.56 (7.50)

GOODv1 72.71 (0.52)  69.04 (0.86)  67.24 (0.88) 19.77 (17.1) 44.71 (1.14)  63.66 (0.84) 56.19 (2.50)
GOODv2 73.17 (0.39)  69.70 (0.27)  67.78 (0.76)  44.91 (4.31) 45.25(1.27)  64.45(1.99) 60.88 (1.00)

T Averaged rank is also reported in the blankets because of dataset heterogeneity. Lower rank is better.

OOD generalization performance on realistic shifts. In Table 4 and Table 5, we examine the effectiveness of GOOD
in real-world data and more complicated distribution shifts. Both averaged accuracy and ranks are reported because
of the dataset heterogeneity. Since the tasks are harder than synthetic ones, interpretable GNNs and OOD objectives
perform similar to or even under-perform the ERM baselines, which is also consistent to the observations in non-linear
benchmarks (Gulrajani & Lopez-Paz, 2021; Ji et al., 2022). However, both GOODv1 and GOODvV2 consistently and
significantly outperform previous methods, including previous specialized methods I' GNNs (Bevilacqua et al., 2021) for
combating graph size shifts, demonstrating the generality and superiority of GOOD.

OOD generalization performance on graph size shifts. In Table 5, we additionally compare GOOD to the specialized
designed methods for OOD generalization in terms of graph sizes (I' GNNs) (Bevilacqua et al., 2021), where we include the
author reported results for both kernel methods and I' GNNS. It can be found that GOOD consistently and significantly
outperforms the previous SOTA methods, which further demonstrates the generality of GOOD.

Comparisons with advanced ablation variants.  Table 5. 00D generalization performance on graph size shifts for real-world
As discussed in Sec. B.4, GOOD can be reduced graphs in terms of Matthews correlation coefficient.
to interpretable GNNs and contrastive learning ap-

. DATASETS NCI1 NCI109 PROTEINS DD AVG

proaches. Hower.:r, across all expe.rlments, we ERM 0.15(005) 0.16(002) 022(0.09) 027(0.09 020
can observe that neither the advanced interpretable ASAP 0.16 (0.10)  0.15(0.07)  0.22(0.16)  0.21(0.08)  0.19
ot : . GIB 0.13(0.10)  0.16(0.02)  0.19(0.08) 0.01(0.18) 0.12

QNNs .(DIR) 1.101.r SOphlSth?lted contrastive objec DIR 0.21(0.06)  0.13(0.05)  0.25(0.14)  0.20 (0.10)  0.20
tlyes Wlth specialized sampling strategy (_CNC) can IRM 0.17 (0.02)  0.14(0.01)  0.21(0.09) 0.22(0.08)  0.19
yield satisfactory OOD performance, which serves V-REX 0.15(0.04)  0.15(0.04)  0.22(0.06)  0.21(0.07)  0.18
/ ‘dence for th iti f the d EIIL 0.14(0.03)  0.16(0.02)  0.20 (0.05)  0.23(0.10)  0.19

as strong evidence 1or the necessities ot the de- IB-IRM 0.12(0.04)  0.15(0.06)  0.21(0.06) 0.15(0.13)  0.16
composition as well as the objective in GOOD. CNC 0.16(0.04)  0.16(0.04)  0.19(0.08) 0.27(0.13)  0.20
Furthermore’ although GOODvl can Outperform ‘WL KERNEL 0.39 (0.00) 0.21 (0.00) 0.00 (0.00) 0.00 (0.00) 0.15
. GC KERNEL  0.02 (0.00)  0.00 (0.00)  0.29 (0.00)  0.00 (0.00)  0.08

GOODv2 when we may have a relatively accurate Tisor 0.17(0.08)  0.25(0.06)  0.12(0.09) 0.23(0.08) 0.19
S, the improvements in GOODv1 are not as stable Pa 0.24(0.04)  0.18(0.04)  0.29(0.11)  0.28(0.06)  0.25
- GOODvV2 disfact hen th TrpGIN 0.26 (0.05)  0.20 (0.04)  0.25(0.12)  0.20(0.05) 0.23
as LUULv2 or even unsatistactory when the as- GOODV1 0.22 (0.07)  0.23(0.09)  0.40 (0.06)  0.29 (0.08)  0.29
sumption is violated. This phenomenon also reveals GOODV2 0.27 (0.07)  0.22(0.05)  0.31(0.12) 0.26 (0.08)  0.27

the advances of GOODYV?2 in practical scenarios.
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G.2. Details about the datasets

We provide more details about the motivation and construction method of the datasets that are used in our experiments.
Statistics of the datasets are presented in Table 6.

SPMotif datasets. We construct 3-class synthetic datasets based on BAMotif (Ying et al., 2019; Luo et al., 2020)
following (Wu et al., 2022c), where the model needs to tell which one of three motifs (House, Cycle, Crane) that the graph
contains. For each dataset, we generate 3000 graphs for each class at the training set, 1000 graphs for each class at the
validation set and testing set, respectively. During the construction, we merely inject the distribution shifts in the training
data while keep the testing data and validation data without the biases. For structure-level shifts (SPMotif-Struc), we
introduce the bias based on FIIF, where the motif and one of the three base graphs (Tree, Ladder, Wheel) are artificially
(spuriously) correlated with a probability of various biases, and equally correlated with the other two. Specifically, given a
predefined bias b, the probability of a specific motif (e.g., House) and a specific base graph (Tree) will co-occur is b while
for the others is (1 — b)/2 (e.g., House-Ladder, House-Wheel). We use random node features for SPMotif-Struc, in order to
study the influences of structure level shifts. Moreover, to simulate more realistic scenarios where both structure level and
topology level have distribution shifts, we also construct SPMotif-Mixed for mixed distribution shifts. We additionally
introduced FIIF attribute-level shifts based on SPMotif-Struc, where all of the node features are spuriously correlated with a
probability of various biases by setting to the same number of corresponding labels. Specifically, given a predefined bias b,
the probability that all of the node features of a graph has label y (e.g., y = 0) being set to y (e.g., X = 0) is b while for the
othersis (1 —b)/2 (e.g., P(X = 1) = P(X = 2) = (1 — b)/2). More complex distribution shift mixes can be studied
following our construction approach, which we will leave for future works.

TU datasets. To study the effects of graph sizes shifts, we follow Yehudai et al. (2021); Bevilacqua et al. (2021) to study the
0OOD generalization abilities of various methods on four of TU datasets (Morris et al., 2020), i.e., PROTEINS, DD, NCI1,
NCI109. Specifically, we use the data splits generated by Yehudai et al. (2021) and use the Matthews correlation coefficient
as evaluation metric following (Bevilacqua et al., 2021) due to the class imbalance in the splits. The splits are generated as
follows: Graphs with sizes smaller than the 50-th percentile are assigned to training, while graphs with sizes larger than the
90-th percentile are assigned to test. A validation set for hyperparameters tuning consists of 10% held out examples from
training. We also provide a detailed statistics about these datasets in table 7.

Graph-SST datasets. Inspired by the data splits generation for studying distribution shifts on graph sizes, we split the data
curated from sentiment graph data (Yuan et al., 2020), that converts sentiment sentence classification datasets SSTS and
SST-Twitter (Socher et al., 2013; Dong et al., 2014) into graphs, where node features are generated using BERT (Devlin
et al., 2019) and the edges are parsed by a Biaffine parser (Gardner et al., 2018). Our splits are created according to the
averaged degrees of each graph. Specifically, we assign the graphs as follows: Those that have smaller or equal than 50-th
percentile averaged degree are assigned into training, those that have averaged degree large than 50-th percentile while
smaller than 80-th percentile are assigned to validation set, and the left are assigned to test set. For SST5 we follow the
above process while for Twitter we conduct the above split in an inversed order to study the OOD generalization ability of
GNNSs trained on large degree graphs to small degree graphs.

CMNIST-sp. To study the effects of PIIF shifts, we select the ColoredMnist dataset created in IRM (Arjovsky et al., 2019).
We convert the ColoredMnist into graphs using super pixel algorithm introduced by Knyazev et al. (2019). Specifically, the
original Mnist dataset are assigned to binary labels where images with digits 0 — 4 are assigned to y = 0 and those with
digits 5 — 9 are assigned to y = 1. Then, y will be flipped with a probability of 0.25. Thirdly, green and red colors will
be respectively assigned to images with labels 0 and 1 an averaged probability of 0.15 (since we do not have environment
splits) for the training data. While for the validation and testing data the probability is flipped to 0.9.

DrugOOD datasets. To evaluate the OOD performance in realistic scenarios with realistic distribution shifts, we
also include three datasets from DrugOOD benchmark. DrugOOD is a systematic OOD benchmark for Al-aided
drug discovery, focusing on the task of drug target binding affinity prediction for both macromolecule (protein tar-
get) and small-molecule (drug compound). The molecule data and the notations are curated from realistic ChEMBL
database (Mendez et al., 2019). Complicated distribution shifts can happen on different assays, scaffolds and molecule
sizes. In particular, we select DrugOOD—1bap-core-ic50-assay, DrugOOD-1bap-core-ic50-scaffold,
and DrugOOD-1bap—-core-ic50-size, from the task of Ligand Based Affinity Prediction which uses ic50 measure-
ment type and contains core level annotation noises. For more details, we refer interested readers to Ji et al. (2022).
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Table 6. Information about the datasets used in experiments. The number of nodes and edges are taking average among all graphs. MCC
indicates the Matthews correlation coefficient.

DATASETS # TRAINING  # VALIDATION  # TESTING  # CLASSES # NODES # EDGES METRICS
SPMOTIF 9,000 3,000 3,000 3 44.96 65.67 ACC
PROTEINS 511 56 112 2 39.06 145.63 MCC
DD 533 59 118 2 284.32 1,431.32 McCC
NCI1 1,942 215 412 2 29.87 64.6 McCC
NCI109 1,872 207 421 2 29.68 64.26 MCC
SSTS 6,090 1,186 2,240 5 19.85 37.70 ACC
TWITTER 3,238 694 1,509 3 21.10 40.20 ACC
CMNIST-sp 40,000 5,000 15,000 2 56.90 373.85 ACC
DRUGOOD-ASSAY 34,179 19,028 19,032 2 32.27 70.25 ROC-AUC
DRUGOOD-SCAFFOLD 21,519 19,041 19, 048 2 29.95 64.86 ROC-AUC
DRUGOOD-SIZE 36,597 17,660 16,415 2 30.73 66.90 ROC-AUC

Table 7. Detailed statistics of selected TU datasets. Table from Yehudai et al. (2021); Bevilacqua et al. (2021).

NCI1 NCI109
ALL | SMALLEST 50% | LARGEST 10% ALL | SMALLEST 50% | LARGEST 10%
CLASS A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37%
CLASS B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62%
NUM OF GRAPHS 4110 2157 412 4127 2079 421
AVG GRAPH SIZE 29 20 61 29 20 61
PROTEINS DD
ALL | SMALLEST 50% | LARGEST 10% ALL | SMALLEST 50% | LARGEST 10%
CLASS A 59.56% 41.97% 90.17% 58.65% 35.47% 79.66%
CLASS B 40.43% 58.02% 9.82% 41.34% 64.52% 20.33%
NUM OF GRAPHS 1113 567 112 1178 592 118
AVG GRAPH SIZE 39 15 138 284 144 746

G.3. Training and Optimization in Experiments

During the experiments, we do not tune the hyperparameters exhaustively while following the common recipes for optimizing
GNNs. Details are as follows.

GNN encoder. For fair comparison, we use the same GNN architecture as graph encoders for all methods. By default, we
use 3-layer GNN with Batch Normalization (Ioffe & Szegedy, 2015) between layers and JK residual connections at last
layer (Xu et al., 2018). For the architectures we use the GCN with mean readout (Kipf & Welling, 2017) for all datasets
except Proteins where we empirically observe better validation performance with a GIN and max readout (Xu et al., 2019),
and for DrugOOD datasets where we follow the backbone used in the paper (Ji et al., 2022), i.e., 4-layer GIN with sum
readout. The hidden dimensions are fixed as 32 for SPMotif, TU datasets, CMNIST-sp, and 128 for SST5, Twitter and
DrugOOD datasets.

Optimization and model selection. By default, we use Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1le — 3
and a batch size of 32 for all models at all datasets. Except for DrugOOD datasets, we use a batch size of 128 following the
original paper (Ji et al., 2022). To avoid underfitting, we pretrain models for 20 epochs for all datasets, except for CMNIST
and Twitter where we pretrain 5 epochs and for SST5 we pretrain 10 epochs, because of the dataset size and the difficulty
of the task. To avoid overfitting, we also employ an early stopping of 5 epochs according to the validation performance.
Meanwhile, dropout (Srivastava et al., 2014) is also adopted for some datasets. Specifically, we use a dropout rate of 0.5 for
CMNIST, SST5, Twitter, DrugOOD-Assay and DurgOOD-Scaffold, 0.1 for DrugOOD-Size according to the validation
performance, and 0.3 for TU datasets following the practice of Bevilacqua et al. (2021).

Implementations of baselines. For implementations of the interpretable GNNs, we use the author released codes (Yu
et al., 2021; Ranjan et al., 2020), where we use the codes provided by the authors® for DIR c(Wu et al., 2022¢) which is the
same as the author released codes. During the implementation, we use the same s. for all interpretable GNN baselines,
chosen from {0.1,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.9} according to the validation performances, and set to 0.25 for
SPMotif following Wu et al. (2022c¢), 0.3 for Proteins and DD, 0.6 for NCI1, 0.7 for NCI109, 0.8 for CMNIST-sp, 0.5 for
SSTS5 and Twitter, and 0.8 for DrugOOD datasets, respectively. Empirically, we observe that the optimization process in
GIB can be unstable during its nested optimization for approximating the mutual information of the predicted subgraph
and the input graph. We use a larger batch size of 128 or reduce the nested optimization steps to be lower than 20 for
stabilizing the performance. If the optimization failed due to the instability during training, we will select the results

3https ://anonymous.4open.science/r/DIR/
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with best validation accuracy as the final outcomes. Although SPMotif-Struc is also evaluated in DIR, we find the results
are inconsistent to the results reported by the author, because DIR adopts Last Epoch Model Selection which
is different from the claim that they select models according to the validation performance,i.e., line 264 to
line 278intrain/spmotif_dir.py from the commit 4b975f9b3962e7820d8449%ebdabbb4dcc30c1025d
of https://github.com/Wuyxin/DIR-GNN. We select the hyperparamter for the proposed DIR regularization
from {0.01,0.1, 1,10} according to the validation performances at the datasets, while we stick to the authors claimed
hyperparameters for the datasets they also experimented with.

For invariant learning, we refer to the implementations in DomainBed (Gulrajani & Lopez-Paz, 2021) for IRM (Arjovsky
et al., 2019), V-Rex (Krueger et al., 2021) and IB-IRM (Ahuja et al., 2021). Since the environment information is not
available, we perform random partitions on the training data to obtain two equally large environments for these objectives.
Moreover, we select the weights for the corresponding regularization from {0.01,0.1,1,10,100} for these objectives
according to the validation performances of IRM and stick to it for others, since we empirically observe that they perform
similarly with respect to the regularization weight choice. For EIIL (Creager et al., 2021), we use the author released
implementations about assigning different samples the weights for being put in each environment and calculating the IRM
loss.

Besides, for CNC (Zhang et al., 2022), we follow the algorithm description to modify the sampling strategy in supervised
contrastive loss (Khosla et al., 2020) based on a pretrained GNN optimized with ERM, and choose the weight for contrastive
loss using the same grid search as for GOOD.

Implementations of GOOD. For fair comparison, GOOD uses the same GNN architecture for GNN encoders as the
baseline methods. We did not do exhaustive hyperparameters tuning for the loss Eq. 40. By default, we fix the temperature
to be 1 in the contrastive loss, and merely search « from {0.5, 1,2, 4, 8,16, 32} and S from {0.5,1, 2,4} according to the
validation performances. For CMNIST-sp, we find larger /3 are required to get rid of intense spurious node features hence
we expand the search range for 3 to {0.5, 1,2, 4, 16,32}, For Graph-SST datasets, we search « from {0.5,1, 2,4} as we
empirically find that increasing « does not help increase the performance with few random runs. Besides, we also have
various implementation options for obtaining the features in G, for obtaining h_, as well as for obtaining predictions based

on G,. By default, we feed the graph representations of featurizer GNN to the classifier GNN, as well as to the contrastive
loss. For classifying G based on G, we use a separate MLP downstream classifier in the classifier GNN f.. The only
exception is for the CMNIST-sp dataset where the spurious correlation is stronger than the invariant signal. Directly feeding
the graph representations from the featurizer GNN can easily overfit to the shortcuts hence we instead feed the original
features to the downstream classifier GNN. There can be more other options, such as using separate graph convolutions on
G, or G., which we leave for future work. Options for obtaining the features in G, are: {from g, from the raw features}.
Options for obtaining hy_are: {from the GNN encoder of the classifier f. with the same pooling as the classifier, from the

GNN encoder of the featurizer g with a SUM global pooling, }. Options for obtaining predictions based on G are:{from
another classifier with shared GNN encoder of f., from another classifier with shared GNN encoder of f. while without
gradients backwards to the encoder, from a single GNN convolution and a same pooling as f.}. We select the corresponding
options according to the validation performance with several runs of random « and 3, and stick to one for each dataset.
As a result, we empirically find using the raw node features for Ge, obtaining héc via a global ADD pooling with the

featurizer outputs, and obtaining predictions based on G, from another classifier with shared GNN encoder of f. while
without gradients backwards to the encoder, has better validation performances. Except for TU datasets where we use the
outputs of g as the features of G, and obtain predictions with one GNN layer for the prediction of G, empirically has better
validation performances.

Evaluation protocol. We run each experiment 10 on TU datasets and 5 times for others where the random seeds start from
1 to the number of total repeated times. During each run, we select the model according to the validation performance and
report the mean and standard deviation of the corresponding metrics.

G.4. Software and hardware

We implement our methods with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019). We ran our
experiments on Linux Servers with 40 cores Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz, 256 GB Memory, and Ubuntu
18.04 LTS installed. GPU environments are varied from 4 NVIDIA RTX 2080Ti graphics cards with CUDA 10.2, 2 NVIDIA
RTX 2080Ti and 2 NVIDIA RTX 3090Ti graphics cards with CUDA 11.3, and NVIDIA TITAN series with CUDA 11.3.
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