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Abstract
Out-of-distribution generalization on graphs re-
quires graph neural networks to identify the invari-
ance among data from different environments. As
the environment partitions on graphs are usually
expensive to obtain, augmenting the environment
information has become the de facto approach.
However, the usefulness of the augmented envi-
ronment information has never been verified. In
this work, we found that it is fundamentally im-
possible to learn invariant graph representations
by augmenting environment information without
additional assumptions. Therefore, we develop a
set of minimal assumptions, including variation
sufficiency and variation consistency, for feasi-
ble invariant graph learning. Based on the as-
sumptions, we propose Graph invAriant Learning
Assistant (GALA), which adopts an additional as-
sistant model that is prone to distribution shifts,
to generate proxy predictions about the environ-
ments. We show that maximizing intra-class infor-
mation guided by the proxy predictions provably
identifies the graph invariance given the minimal
assumptions. We demonstrate the usefulness of
GALA with extensive experiments on 11 datasets
containing various graph distribution shifts.

1. Introduction
Learning graph representations using graph neural networks
(GNNs) has proven to be highly successful in tasks involv-
ing relational information (Kipf & Welling, 2017; Hamilton
et al., 2017; Veličković et al., 2018; Xu et al., 2018; 2019).
However, it assumes that the training and test graphs are
drawn from the same distribution, which is rarely the case
in practice (Hu et al., 2020; Koh et al., 2021; Huang et al.,
2021). The performance of GNNs could be seriously de-
generated by distribution shifts, i.e., mismatches between
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the training and test distributions caused by underlying envi-
ronmental factors during the data collection process (Ding
et al., 2021; Ji et al., 2022; Gui et al., 2022).

To overcome the Out-of-Distribution (OOD) generalization
failure, recently there has been a growing interest in in-
corporating the invariance principle from causality (Peters
et al., 2016) into GNNs (Wu et al., 2022a;b; Chen et al.,
2022a; Miao et al., 2022; Yu et al., 2022; Liu et al., 2022;
Li et al., 2022; Fan et al., 2022; Yang et al., 2022; Gui et al.,
2022). The rationale of these invariant graph learning ap-
proaches is to identify an underlying invariant subgraph of
an input graph (or ego-graph of nodes (Wu et al., 2022a)),
which shares an invariant correlation with the labels across
multiple graph distributions that come from different envi-
ronments (Wu et al., 2022a; Chen et al., 2022a). Thus, the
predictions based on the invariant subgraphs can generalize
to OOD graphs (Peters et al., 2016).

As the environment labels or partitions that describe the
sources of distribution shifts on graphs are often expensive
to obtain (Chen et al., 2022a), augmenting the environment
information, such as generating new environments (Wu
et al., 2022a;b; Liu et al., 2022) and inferring the environ-
ment labels (Li et al., 2022; Yang et al., 2022), has become
the de facto approach for invariant graph learning. How-
ever, little attention has been paid to verifying the fidelity, or
faithfulness, 1 of augmented environment information. For
example, if the generated environments or inferred environ-
ment labels induce a higher bias or noises, it would make
the learning of graph invariance even harder.

Although it looks appealing to learn both the environment
information and the graph invariance, this approach could
easily run into the “no free lunch” dilemma (Wolpert &
Macready, 1997). In fact, Lin et al. (2022) found that there
exist negative cases in the Euclidean regime where it is infea-
sible to identify the invariant features without environment
partitions. When it comes to the graph regime where the
OOD generalization is fundamentally more difficult (Chen
et al., 2022a), it raises a challenging question:

1The fidelity or faithfulness refers to whether the augmented
environment information can actually improve the OOD general-
ization on graphs.
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Figure 1. An illustration of GALA. Consider the task of classifying
graphs according to whether there exists a “House” or “Cycle”
motif. The left half and right half are predicted as “House” and
“Cycle” by the environment assistant model that is prone to spurious
correlations. The upper left (right) and the bottom right (left)
are graphs that are classified correctly (incorrectly), denoted as
{Gp} ({Gn}) and colored in blue (green). GALA pulls graphs
with the same label but from {Gp} and {Gn} closer at the latent
representation space, hence identifies the invariant subgraph.

When and how could one learn graph invariance without
the environment labels?

In this work, we present a theoretical study of the afore-
mentioned problem and seek a set of minimal assumptions
on the underlying environments such that identifying the
graph invariance is possible. Based on a family of simple
graph examples (Def. 3.1), we show that existing environ-
ment augmentation approaches can fail to generate faithful
environments (Prop. 3.2). In fact, when the underlying en-
vironments are not sufficient to cover all the variations of
the spurious subgraphs, identifying the invariant subgraph
is fundamentally impossible (Theorem 3.3). Sometimes, the
augmented environments can even lead to a worse OOD
performance. The failure of faithful environment genera-
tion implies the necessity of variation sufficiency (Assump-
tion 3.4). Moreover, even with sufficient environments,
inferring faithful environment labels remains impossible
(Prop. 3.5). Since invariant and spurious subgraphs can
have an arbitrary degree of correlation strengths with labels,
for each training environment, one can always find a corre-
sponding environment with the same joint distribution of
P (G, Y ) but a different invariant subgraph. In order to pre-
vent the unidentifiable cases, we need to ensure the variation
consistency, that is, the invariant and spurious correlation
strengths should have a consistent relationship.

To resolve the OOD generalization challenge under the
established assumptions, we propose Graph invAriant
Learning Assistant (GALA), which incorporates an addi-
tional assistant model that is prone to distribution shifts,
to generate proxy predictions of the environments. Differ-
ent from previous approaches (Yang et al., 2022; Li et al.,

2022), GALA does not require explicit environment labels
but directly maximizes the intra-class mutual information
among samples predicted correctly ({Gp}) and incorrectly
({Gp}) by the environment assistant model (as illustrated in
Fig. 1). As {Gp} and {Gp} capture the variations of spuri-
ous correlations, we show that GALA is able to identify the
underlying invariant subgraph under the minimal assump-
tions (Theorem 4.1). We conducted extensive experiments
to validate the effectiveness of GALA using 11 datasets with
various graph distribution shifts. Notably, GALA improves
the baseline method up to 36% in realistic graph datasets.

2. Background and Preliminaries
We introduce the key concepts and background in this sec-
tion, while leaving more details to Appendix A.
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Figure 2. SCMs on graph distribution shifts (Chen et al., 2022a).

OOD generalization on graphs. This work focuses on
graph classification, while the results generalize to node
classification as well using the same setting as in Wu et al.
(2022a). Specifically, we are given a set of graph datasets
D = {De}e collected from multiple environments Eall. Sam-
ples (Gei , Y

e
i ) ∈ De from the same environment are consid-

ered as drawn independently from an identical distribution
Pe. We consider the graph generation process proposed
by Chen et al. (2022a) that covers a broad case of graph
distribution shifts. As shown in Fig. 2, the generation of the
observed graph G and labels Y are controlled by a set of
latent causal variable C and spurious variable S. C and S
control the generation of the underlying invariant subgraph
Gc and spurious subgraph Gs, respectively. Since S can
be affected by the environment E, the correlation between
Y , S and Gs can change arbitrarily when the environment
changes. Besides, the latent interaction among C, S and Y
can be further categorized into Full Informative Invariant
Features (FIIF) when Y ⊥⊥ S|C and Partially Informative
Invariant Features (PIIF) when Y 6⊥⊥ S|C.

To tackle the OOD generalization challenge on graphs from
Fig. 2, the existing invariant graph learning approaches
generically aim to identify the underlying invariant subgraph
Gc to predict the label Y (Wu et al., 2022a; Chen et al.,
2022a). Specifically, the goal of OOD generalization on
graphs is to learn an invariant GNN f := fc ◦ g, which
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is composed of two modules: a) a featurizer g : G → Gc
that extracts the invariant subgraph Gc; b) a classifier fc :
Gc → Y that predicts the label Y based on the extracted Gc,
where Gc refers to the space of subgraphs of G. The learning
objectives of fc and g are formulated as

maxfc, g I(Ĝc;Y ), s.t. Ĝc ⊥⊥ E, Ĝc = g(G). (1)

Since E is not observed, many strategies are proposed to
impose the independence of Ĝc and E. A common ap-
proach is to augment the environment information. For
example, based on the estimated invariant subgraphs Ĝc
and spurious subgraphs Ĝs, Wu et al. (2022b); Liu et al.
(2022); Wu et al. (2022a) proposed to generate new environ-
ments, while Yang et al. (2022); Li et al. (2022) proposed
to infer the underlying environment labels. However, we
show that it is fundamentally impossible to augment faith-
ful environment information in Sec. 3. Yu et al. (2021);
Miao et al. (2022); Yu et al. (2022); Miao et al. (2023) adopt
graph information bottleneck to tackle FIIF graph shifts, and
they cannot generalize to PIIF shifts. Our works focuses
on PIIF shifts, as it is more challenging when there is no
environment label (Lin et al., 2022). Fan et al. (2022) gener-
alized (Lee et al., 2021) to tackle severe graph biases, i.e.,
when H(S|Y ) < H(C|Y ). Chen et al. (2022a) proposed a
contrastive framework to tackle both FIIF and PIFF graph
shifts, but limited to H(S|Y ) > H(C|Y ). However, in
practice it is usually unknown whether H(S|Y ) < H(C|Y )
or H(S|Y ) > H(C|Y ) without environment information.

Invariant learning without environment labels. There
are also plentiful studies in invariant learning without en-
vironment labels. Creager et al. (2021a) proposed a min-
max formulation to infer the environment labels. Liu et al.
(2021b) proposed a self-boosting framework based on the
estimated invariant and variant features. Liu et al. (2021a);
Zhang et al. (2022) proposed to infer labels based the predic-
tions of an ERM trained model. However, Lin et al. (2022)
found failure cases in Euclidean data where it is impossible
to identify the invariant features without given environment
labels. Moreover, as the OOD generalization on graphs
is fundamentally more difficult than Euclidean data (Chen
et al., 2022a), the question about the feasibility of learning
invariant graph representations without environment labels
remains unanswered.

3. Pitfalls of Environment Augmentation
Given only the mixed training data without environment
partitions, is it possible to learn to generate effective new
environment or infer the underlying environment labels?

In the discussion below, we will instantiate the problem
with simple two-piece graphs (Kamath et al., 2021), which
follows the PIIF distribution shifts as in Fig. 2(c).

Definition 3.1 (Two-piece graphs). Each environment is
defined with two parameters, αe, βe ∈ [0, 1], and the dataset
De is generated as follows:

(a) Sample ye ∈ {−1, 1} uniformly;

(b) Generate Gc and Gs via :

Gc := fGc
gen (Y · Rad(αe)), Gs := fGs

gen (Y · Rad(βe)),

where fGc
gen , f

Gs
gen respectively map input {−1, 1} to a

specific graph selected from a given set, and Rad(α) is
a random variable taking value −1 with probability α
and +1 with probability 1− α;

(c) Sythesize G by randomly concatenating Gc and Gs:

G := fGgen(Gc, Gs).

We denote an environment e with (αe, βe) for simplicity.
By default, different environments will have a different
βe. As βe varies, the correlation between GS and Y will
change across different environments, while P (Y |Gc) re-
mains invariant. We use Emix

tr to denote the mixed training
environments as the environment labels are not available.

3.1. Pitfalls of environment generation

We begin by discussing the cases where there are few envi-
ronments, which are considered in environment generation
approaches (Wu et al., 2022a;b; Liu et al., 2022). When
augmenting the data, they provide a set of “virtual” environ-
ments Dv = {Ev} such that we can identify the invariant
features by applying a OOD risk to the joint dataset with
the augmented data Dvtr = {Emix

tr } ∪ {Ev}.

The generation of the “virtual” environments is primar-
ily based on the estimations of the invariant and spurious
subgraphs, denoted as Ĝc and Ĝs, respectively. Wu et al.
(2022b); Liu et al. (2022) proposed DIR and GREA to con-
struct new graphs by assembling Ĝc and Ĝs from different
graphs. Specifically, given n samples {Gi, Y i}ni=1,2 the
new graph samples in Ev is generated as follows:

Gi,j = fGgen(Ĝic, Ĝ
j
s), ∀i, j ∈ {1...n}, Y i,j = Y i,

which generates a new environment Ev with n2 samples.

Although both DIR and GREA gain some empirical success,
the faithfulness of Ev remains questionable, because the
generation is merely based on inaccurate estimations of
the invariant and spurious subgraphs. Specifically, when
Ĝc contains parts of Gs, assigning the same labels to the

2We slightly abuse the superscript and subscript when denot-
ing the ith sample to avoid confusion of double superscripts or
subscripts.
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(b) Failures of env. inferring
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(c) Failures of resolving env. consistency

Figure 3. Failures of finding faithful environment information. Results shown in the figure are based on the 3 class two-piece graphs
(Def. 3.1), where the invariant correlation strength is fixed as 0.7 while the spurious correlation strength is varied from 0.5 to 0.7. We can
find that both environment augmentation and inferring approaches suffer from severe performance decreases or even underperform ERM
when the dominated correlation is not suitable for the method. In contrast, GALA maintains strong OOD performance for both cases.

generated graph is more likely to strengthen the spurious
correlation between Gs and Y . Consider an extreme case
where the model yields a reversed estimation, i.e., Ĝc = Gs
and Ĝs = Gc. It is possible since there could be Emix

tr where
the correlation between Gs and Y dominates the overall
correlation between G and Y . Unfortunately, we found that
the generated environment can even destroy the invariant
correlations entirely.

Proposition 3.2. Consider the two-piece graph dataset
Etr = {(α, β1), (α, β2)} with α ≥ β1, β2 (e.g., Etr =
{(0.25, 0.1), (0.25, 0.2)}), and its corresponding mixed
environment Emix

tr = {(α, (β1 + β2)/2)} (e.g., Emix
tr =

{(0.25, 0.15)}). It holds that the augmented environment
Ev is also a two-piece graph dataset with

Ev = {(0.5, (β1 + β2)/2)} (e.g., Ev = {(0.5, 0.15)}).

The proof is given in Appendix C.1. This also extends to the
adversarial augmentation (Wu et al., 2022a; Yu et al., 2022),
which will destroy the actual Ĝc. We verified the failures
of environment generation of DIR and GREA in Fig. 3(a),
where both DIR and GREA suffer from severe performance
decrease when the spurious correlation dominates.

In fact, when the underlying environments are insufficient to
differentiate the variations of the spurious features, it is fun-
damentally impossible to identify the underlying invariant
graph from the spurious subgraph.

Theorem 3.3. (Variation insufficiency) Given the same
graph generation process as Fig. 2, when there exists spu-
rious subgraph Gs s.t. P e1(Y |Gs) = P e2(Y |Gs) for any
e1, e2 ∈ Etr, where P e(Y |Gs) is the conditional distribu-
tion P (Y |Gs) under environment e ∈ Eall, it is impossible
for any learning algorithm to identify Gc.

The proof is given in Appendix C.2. Theorem 3.3 implies
a fundamental requirement on Etr that the environments
therein should cover the variations of each spurious feature.

Assumption 3.4. (Variation sufficiency) Given the same
graph generation process as in Fig. 2, for any Gs, there ex-
ists two environments e1, e2 ∈ Etr, such that P e1(Y |Gs) 6=
P e2(Y |Gs), and P e1(Y |Gc) = P e2(Y |Gc).

Assumption 3.4 aligns with the definition of invariance (Ka-
math et al., 2021; Chen et al., 2022a) that the invariant sub-
graph Gc is expected to satisfy P e1(Y |Gc) = P e2(Y |Gc)
for e1, e2 ∈ Eall. If there exist spurious subgraphs Gs also
satisfy the invariance condition, then it is impossible to tell
Gc from Gs even with environment labels.

3.2. Pitfalls of environment inferring

Although environment sufficiency (Assumption 3.4) relieves
the need for generating new environments, is it possible to
infer the underlying environment labels via approaches such
as MoleOOD (Yang et al., 2022) and GIL (Li et al., 2022),
to facilitate invariant graph learning?

Considering the two-piece graph examples Etr =
{(0.2, 0.1), (0.2, 0.3)}, when given the underlying envi-
ronment labels, it is easy to identify the invariant sub-
graphs from spurious subgraphs. However, when there is no
environment label, we have Emix

tr = {(0.2, 0.2)}, where
P (Y |Gc) = P (Y |Gs). The identifiability of Gs is ill-
posed, as it does not affect the Emix

tr even if we switchGc and
Gs. More formally, consider the environment mixed from
two two-piece graph environments {(α, β1)} and {(α, β2)},
then we have Emix

tr = {(α, (β1 + β2)/2}. For each Emix
tr , we

can also find a corresponding Emix
tr
′

= {((β′1 + β′1)/2, α′)}
with {(β′1, α′)} and {(β′2, α′)}. Then, let

α = (β′1 + β′1)/2 = α′ = (β1 + β2)/2. (2)

We now obtain Emix
tr and Emix

tr
′ which share the identical dis-

tribution P (Y,G) while the underlying Gc can be different.
More generally, we have the following proposition.

Proposition 3.5. There exist 2 two-piece graph training
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environments Etr and Etr
′, whose mixed training environ-

ments are the same, such that any learning algorithm will
fail to capture the invariance of at least one of the training
environments.

The proof is given in Appendix C.3. Figure 3(b) shows that
both MoleOOD and GIL fail to infer faithful environment
labels or even underperform ERM. The failure implies that,
whenever it allows the existence of identical Emix

tr s by mixing
different environments, the OOD generalization on graphs
is impossible. Therefore, we seek an additional assumption
that excludes the unidentifiability case. More specifically,
we propose to constrain the relationship between α (i.e.,
H(Y |Gc) ) and βe (i.e., H(Y |Gs)).
Assumption 3.6. (Variation consistency) For all envi-
ronments in Etr, either H(C|Y ) > H(S|Y ) holds or
H(C|Y ) < H(S|Y ) holds.

Intuitively, Assumption 3.6 imposes the consistency require-
ment on the correlation strengths between invariant and
spurious subgraphs with labels. For two-piece graphs with
consistent variations, mixing up the environments will yield
a new environment with the same variation strength rela-
tionships. Thus, Assumption 3.6 gets rid of the previous
unidentifiability cases, as which require the existence of
environments with different variation relationships. The
requirement on variation consistency also resembles the “no
free lunch” theorem (Wolpert & Macready, 1997). Other-
wise, we can always find some environment that assembles
the unidentifiability case and prevents OOD generalization.
Corollary 3.7. (No Free Lunch for Graph OOD) Without
Assumption 3.6, there does not exist a learning algorithm
that captures the invariance of all of the two-piece graph
environments.

The proof is given in Appendix C.4. Different from our
work, Lin et al. (2022) proposed to incorporate additional
auxiliary information that satisfies certain requirements to
mitigate the unidentifiability case. However, such auxiliary
information is often unavailable and expensive to obtain
on graphs. More importantly, the requirements are also
unverifiable without more assumptions, which motivates us
to consider the relaxed case implied by Assumption 3.6.

3.3. Challenges of environment augmentation

Assumption 3.4 and Assumption 3.6 establish the mini-
mal conditions for identifying the underlying invariant sub-
graphs. However, it also raises new challenges, as shown in
Table. 1. Chen et al. (2022a) proposed CIGA to maximize
the intra-class mutual information of the estimated invariant
subgraphs to tackle the case when H(C|Y ) < H(S|Y ).
While for the case when H(S|Y ) < H(C|Y ), Fan et al.
(2022) proposed DisC that adopts GCE loss (Lee et al.,
2021) to extract the spurious subgraph with a larger learning

Table 1. Assumption 3.6 raises new challenges for environment
augmentation, where no existing works could handle both cases.

H(S|Y ) < H(C|Y ) H(S|Y ) > H(C|Y )
DisC 3 7

CIGA 7 3

GALA (Ours) 3 3

step size such that the left subgraph is invariant. However,
both CIGA and DisC can fail when there is no prior knowl-
edge about the relations between H(C|Y ) and H(S|Y ).
We verify the failures of DisC and CIGA in Fig. 3(c). The
failure thus raises a challenging question:

Given the established minimal assumptions, is there a
unified framework that tackles both cases when H(C|Y ) <
H(S|Y ) and H(C|Y ) > H(S|Y )?

4. Learning Invariant Graph Representations
with Environment Assistant

We provide affirmative answers to the previous question
by proposing a new framework, GALA: Graph invAriant
Learning Assistant, which adopts an assistant model to pro-
vide faithful information about the underlying environments.

4.1. Learning with An Environment Assistant

Intuitively, a straightforward approach to tackle the afore-
mentioned challenge is to extend the framework of either
DisC (Fan et al., 2022) or CIGA (Chen et al., 2022a) to
resolve the other case. As DisC always destroys the first
learned features which tends to be more difficult to extend,
we are thus motivated to extend the framework of CIGA to
resolve the case when H(S|Y ) < H(C|Y ).

Understanding the success and failure of CIGA. The
principle of CIGA lies in maximizing the mutual informa-
tion of the estimated invariant subgraphs from the same
class, i.e.,

max
fc,g

I(Ĝc;Y ), s.t. Ĝc ∈ arg max
Ĝc=g(G),|Ĝc|≤sc

I(Ĝc; G̃c|Y ),

(3)
where G̃c = g(G̃) and G̃ ∼ P(G|Y ), i.e., G̃ is sampled
from training graphs that share the same label Y as Ĝ. The
key reason for the success of Eq. 3 is that, given the data gen-
eration process as in Fig. 2 and the same C, the underlying
invariant subgraph Gc maximizes the mutual information of
subgraphs from the two environments, i.e., ∀e1, e2 ∈ Eall,

Ge1c ∈ arg maxĜe1
c
I(Ĝe1c ; Ĝe2c |C), (4)

where Ĝe1c and Ĝe2c are the estimated invariant subgraphs
corresponding to the same latent causal variable C = c
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under the two environments e1, e2, respectively. Since
C is not directly observable, CIGA adopts Y as a proxy
for C, as when H(S|Y ) > H(C|Y ), Gc maximizes
I(Ĝe1c ; Ĝe2c |Y ) and thus I(Ĝc; G̃c|Y ). However, when
H(S|Y ) < H(C|Y ), the proxy no longer holds. Given
the absence of E, simply maximizing intra-class mutual
information favors the spurious subgraph Gs instead, i.e.,

Gs ∈ arg maxĜc
I(Ĝc; G̃c|Y ). (5)

Invalidating spuriousness dominance. To mitigate the
issue, we are motivated to find a new proxy that samples G̃c
for Eq. 5, while preserving only the Gc as the solution.

To begin with, we first consider resolving the failure case
of CIGA. When H(S|Y ) < H(C|Y ), although the corre-
lation between Gs and Y dominates the intra-class mutual
information, Assumption 3.4 implies that there exists a sub-
set of training data where P (Y |Gs) varies, while P (Y |Gc)
remains invariant. Therefore, the dominance of spurious
correlations no longer holds in samples from the subset. In-
corporating the subset into Eq. 3 as G̃c can further invalidate
the dominance of Gs in Eq. 3. Denote subset as {Ĝnc }, then

Gc ∈ arg maxĜp
c
I(Ĝpc ; G̃

n
c |Y ), (6)

where Ĝpc ∈ {Ĝpc} is sampled from the subset {Ĝpc} dom-
inated by spurious correlations, while G̃nc ∈ {Ĝnc } is sam-
pled from the subset {Ĝnc } where spurious correlation no
long dominates, or dominated by invariant correlations. We
prove the effectiveness of Eq. 6 in Theorem 4.1.

Environment assistant model A. The remaining chal-
lenge is to find the desired subsets {Ĝpc} and {G̃nc }. Moti-
vated by the success in tackling spuriousness dominated
OOD generalization via learning from a biased predic-
tors (Nam et al., 2020; Lee et al., 2021; Liu et al., 2021a;
Zhang et al., 2022), we propose to incorporate an assistant
model A that is prone to spurious correlations. Training A
with ERM using the spuriousness dominated data enables
A learns spurious correlations, and hence we can identify
the subsets where the spurious correlations hold or shifts,
according to whether the predictions of A are accurate or
not. More formally, we have

{Ĝpc} = {g(Gpi )|A(Gpi ) = Yi},

{G̃nc } = {g(Gni )|A(Gni ) 6= Yi},
(7)

where A = arg maxÂ I(Â(G);Y ).

Reducing to invariance dominance case. Although Eq. 6
resolves the spuriousness dominance case, can it still pre-
serves Gc as the only solution when H(S|Y ) > H(C|Y )?

Algorithm 1 GALA: Graph invAriant Learning Assistant
1: Input: Training data Dtr; environment assistant A;

featurizer g; classifier fc; length of maximum training
epochs e; batch size b;

2: Initialize environment assistant A;
3: for p ∈ [1, . . . , e] do
4: Sample a batch of data {Gi, Yi}bi=1 from Dtr;
5: Obtain Environment Assistant predictions {ŷei }bi=1;
6: for each sample Gi, yi ∈ {Gi, Yi}bi=1 do
7: Find postive graphs with same yi and different ŷei ;
8: Find negative graphs with different yi but same

environment assistant prediction ŷei ;
9: Calculate GALA risk via Eq. 10;

10: Update fc, g via gradients from GALA risk;
11: end for
12: end for
13: return final model fc ◦ g;

Fortunately, we find positive answers. Considering training
A with ERM using the invariance dominated data, A will
learn both invariant correlations and spurious correlations.
Therefore, {G̃nc } switches to the subset that is dominated
by spurious correlations, while {Ĝpc} switches to the subset
dominated by invariant correlations. Then, Eq. 6 establishes
a lower bound for the intra-class mutual information, i.e.,

I(Ĝpc ; G̃
n
c |Y ) ≤ I(Ĝc; G̃c|Y ), (8)

where Ĝpc ∈ {Ĝpc}, G̃nc ∈ {G̃nc }, and Ĝc, G̃c are the esti-
mated subgraphs for two random samples with the same
label. The equality is achieved by taking Gc as the solution
for the featurizer g.

4.2. Theoretical analysis

In the following theorem, we show that the derived objective
from Sec. 4.1 can identify the underlying invariant subgraph
and yields an invariant GNN defined in Sec. 2.

Theorem 4.1. Given i) the same data generation process
as in Fig. 2; ii) Dtr that satisfies variation sufficiency (As-
sumption 3.4) and variation consistency (Assumption 3.6);
iii) {Gp} and {Gn} are distinct subsets of Dtr such that
I(Gns ;Gps |Y ) = 0, ∀Gps = arg maxĜp

s
I(Ĝps ;Y ) under

{Gp}, and ∀Gns = arg maxG̃n
s
I(G̃ns ;Y ) under {Gn}; sup-

pose |Gc| = sc, ∀Gc, resolving the following GALA objec-
tive elicits an invariant GNN defined via Eq. 13,

max
fc,g

I(Ĝc;Y ), s.t. g ∈ arg max
ĝ,|Ĝp

c |≤sc
I(Ĝpc ; G̃

n
c |Y ), (9)

where G̃pc ∈ {Ĝpc = g(Gp)} and G̃nc ∈ {G̃nc = g(Gn)}
are the estimated invariant subgraphs via g from {Gp} and
{Gn}, respectively.
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The proof is given in Appendix C.5. Essentially, assumption
iii) in Theorem 4.1 is an implication of the variation suffi-
ciency (Assumption 3.4). When given the distinct subsets
{Gp} and {Gn} with different relations of H(C|Y ) and
H(S|Y ), since H(C|Y ) remains invariant across different
subsets, the variation happens to be the spurious correla-
tions between S and Y . By differentiating spurious cor-
relations into distinct subsets, maximizing the intra-class
mutual information helps identify the true invariance. The
fundamental rationale of GALA relies on the commutative
law of mutual information.

4.3. Practical implementation

Environment assistant implementation. Theorem 4.1
shows the effectiveness of GALA when given proper sub-
sets of {Gp} and {Gn}. In practice, we can implement the
environment assistant in multiple forms. As discussed in
Sec. 4.1, ERM trained model can serve as a reliable proxy.
Since ERM tends to learn the first dominant features, when
H(S|Y ) < H(C|Y ), ERM will first learn to extract spu-
rious subgraphs Gs to make predictions. Therefore, we
can obtain {Gp} by finding samples where ERM correctly
predicts the labels, and we obtain {Gn} for samples where
ERM predicts incorrect labels. In addition to direct label
predictions, the clustering predictions of the hidden repre-
sentations yielded by environment assistant models can also
be used for sampling {Gp} and {Gn} (Zhang et al., 2022).
Besides, we can also incorporate models that are easier to
overfit to the first dominant features to better differentiate
{Gp} from {Gn}. We provide more discussions about the
implementations of environment assistant in Appendix D.

Objective implemention. As the estimation of mutual
information could be highly expensive (van den Oord et al.,
2018; Belghazi et al., 2018), inspired by Chen et al. (2022a),
we adopt the contrastive learning to approximates the mutual
information between subgraphs in Eq. 9 (Khosla et al., 2020;
Chopra et al., 2005; Salakhutdinov & Hinton, 2007; van den
Oord et al., 2018; Belghazi et al., 2018):

I(Ĝpc ; G̃
n
c |Y ) ≈E{Ĝp

c ,G̃
n
c }∼Pg(G|Y=Y )

{Gi
c}

M
i=1∼Pg(G|Y 6=Y )

log
e
φ(hĜ

p
c
,hG̃n

c
)

e
φ(hĜ

p
c
,hG̃n

c
)

+
∑M
i=1 e

φ(hĜc
,hGi

c
)
,

(10)
where (Ĝpc , G̃

n
c ) are subgraphs extracted by g from

{Gp}, {Gn} that share the same label, {Gic}Mi=1 are sub-
graphs extracted by g from G that has a different la-
bel. hĜp

c
, hG̃n

c
, hGi

c
are the graph presentations of the ex-

tracted subgraphs, and φ measures the similarity between
graph representations. As M → ∞, Eq. 10 approximates
I(Ĝpc ; G̃

n
c |Y ) (Ahmad & Lin, 1976; Kandasamy et al., 2015;

Wang & Isola, 2020).

Table 2. OOD generalization performance under various invariant
and spurious correlation degrees in the two-piece motif datasets.
Each dataset is generated from a variation of two-piece graph
model, denoted as {a, b}, where a refers to the invariant correlation
strength and b refers to the spurious correlation strength.

DATASETS {0.8, 0.6} {0.8, 0.7} {0.8, 0.9} {0.7, 0.9}

ERM 66.91 (2.55) 62.55 (2.38) 41.90 (1.74) 36.02 (1.55)
IRM 70.06 (1.22) 61.78 (1.05) 42.63 (2.22) 35.85 (0.84)
V-REX 69.32 (1.88) 65.10 (2.46) 43.42 (1.90) 35.17 (1.85)
EIIL 66.10 (3.47) 61.40 (1.71) 40.47 (2.15) 36.48 (0.90)
IB-IRM 64.89 (2.23) 61.76 (1.81) 42.25 (2.13) 37.31 (1.73)

GREA 79.39 (1.25) 75.88 (0.83) 54.19 (4.06) 42.59 (2.27)
GSAT 79.87 (1.05) 76.68 (1.65) 53.14 (1.80) 40.99 (0.92)
MOLEOOD 66.61 (1.72) 52.75 (4.73) 41.73 (0.81) 34.25 (2.45)
GIL 80.72 (0.75) 77.87 (0.75) 54.48 (2.09) 42.18 (2.09)
DISC 63.49 (9.56) 59.64 (4.96) 49.25 (15.7) 38.90 (9.67)
CIGAV1 80.39 (0.80) 78.11 (0.89) 54.52 (1.54) 44.34 (6.03)
GALA 82.21 (1.00) 80.99 (0.76) 57.00 (1.57) 45.05 (2.78)
ORACLE (IID) 82.37 (0.77) 83.25 (0.86) 82.61 (0.48) 76.47 (0.66)

For each Gp, in addition to sampling only positive samples
from {Gn}, we can also find hard negative samples based
on environment assistant predictions, which have a different
ground truth labels Y but being predicted as the same as
Gp (Zhang et al., 2022). The detailed algorithm description
of GALA is shown as in Algorithm 1.

5. Experimental Evaluation
We evaluated GALA with both synthetic and realistic graph
distribution shifts. Specifically, we are interested in the
following two questions: (a) Can GALA improve over the
state-of-the-art invariant graph learning methods when the
spurious subgraph has a stronger correlation with the labels?
(b) Will GALA affect the performance when the invariant
correlations are stronger?

5.1. Datasets

We prepared both synthetic and realistic graph datasets con-
taining various distribution shifts. We will briefly introduce
each dataset. More details are given in Appendix E.1.

Two-Piece Motif. We adopted BA-2motifs (Luo et al.,
2020) to implement 4 variants of 3-class two-piece graph
(Def. 3.1) datasets. The datasets contain different relation-
ships of H(C|Y ) and H(S|Y ) by controlling the α and β
in the mixed environment. We consider 4 cases of α − β,
ranging from {+0.2,+0.1,−0.1,−0.2}.

Realistic datasets. We also adopted datasets contain-
ing various realistic graph distribution shifts to compre-
hensively evaluate the OOD performance of GALA. We
adopted 3 dataset from DrugOOD benchmark (Ji et al.,
2022), including splits using Assay, Scaffold, and Size
splits from the EC50 category (denoted as EC50-*). We
also adopted graphs converted from the ColoredMNIST
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Table 3. OOD generalization performance under realistic graph distribution shifts.

DATASETS EC50-ASSAY EC50-SCA EC50-SIZE CMNIST-SP GRAPH-SST2 GRAPH-SST5 TWITTER AVG (RANK)†

ERM 76.42 (1.59) 64.56 (1.25) 62.79 (1.15) 21.56 (5.38) 81.54 (1.13) 42.62 (2.54) 59.34 (1.13) 58.40 (7.14)
IRM 76.51 (1.89) 64.82 (0.55) 63.23 (0.56) 23.29 (7.82) 82.22 (0.88) 42.77 (1.26) 60.42 (1.06) 59.04 (5.29)
V-REX 76.73 (2.26) 62.83 (1.20) 59.27 (1.65) 24.62 (8.75) 79.27 (1.95) 42.48 (1.67) 60.50 (2.05) 57.96 (7.57)
EIIL 76.96 (0.25) 64.95 (1.12) 62.65 (1.88) 24.55 (13.3) 80.70 (1.21) 43.79 (1.19) 60.15 (1.44) 59.11 (5.00)
IB-IRM 76.72 (0.98) 64.43 (0.85) 64.10 (0.61) 13.06 (1.97) 82.12 (1.43) 43.02 (1.94) 60.80 (2.50) 57.75 (5.57)

GREA 73.47 (2.48) 62.00 (1.36) 61.88 (1.00) 18.64 (6.44) 80.20 (0.56) 43.29 (0.85) 59.92 (1.48) 57.06 (8.57)
GSAT 66.87 (8.70) 63.31 (1.17) 61.70 (1.48) 12.77 (2.00) 80.55 (2.18) 43.24 (0.61) 60.13 (1.51) 55.51 (8.57)
DISC 65.40 (5.34) 54.97 (3.86) 56.79 (2.56) 54.07 (15.3) 79.10 (2.09) 40.67 (1.19) 57.89 (2.02) 58.41 (10.1)
MOLEOOD 61.94 (1.90) 59.53 (3.47) 56.08 (1.45) 39.55 (4.35) 80.78 (1.13) 40.36 (1.85) 59.26 (1.67) 56.79 (9.71)
GIL 72.13 (4.70) 63.05 (1.04) 62.08 (1.60) 18.04 (4.39) 82.04 (0.97) 43.30 (1.24) 61.78 (1.66) 57.49 (6.29)
CIGAV1 78.46 (0.45) 66.05 (1.29) 65.35 (0.88) 23.66 (8.65) 81.97 (0.87) 44.05 (1.48) 61.15 (0.72) 60.10 (3.00)
GALA 79.24 (1.36) 66.00 (1.86) 66.01 (0.84) 59.16 (3.64) 82.50 (0.86) 44.88 (1.02) 62.45 (0.62) 65.75 (1.14)
ORACLE (IID) 85.18 (1.13) 83.02 (0.77) 86.07 (0.33) 67.25 (0.76) 91.40 (0.26) 47.96 (1.34) 63.66 (0.79)
†Averaged rank is also reported in the parentheses because of dataset heterogeneity. Lower rank is better.

dataset of IRM (Arjovsky et al., 2019) using the algorithm
from Knyazev et al. (2019) that contains distribution shifts
in node attributes (denoted as CMNIST-sp). In addition,
we adopted Graph-SST2, Graph-SST5 and Twitter (Yuan
et al., 2020) and inject degree biases. The training set in
Graph-SST2 and Graph-SST5 contain graphs with smaller
average degrees than the test set, while the training set in
Twitter contains a larger average degree.

5.2. Baselines and experiment setup

We adopted the state-of-the-art OOD methods from the
Euclidean regime, including IRMv1 (Arjovsky et al., 2019),
VREx (Krueger et al., 2021), EIIL (Creager et al., 2021b)
and IB-IRM (Ahuja et al., 2021), as well as from the graph
regime, including GREA (Liu et al., 2022), GSAT (Miao
et al., 2022), MoleOOD (Yang et al., 2022), GIL (Li et al.,
2022), DisC (Fan et al., 2022) and CIGAv1 (Chen et al.,
2022a). We excluded DIR (Wu et al., 2022b) and GIB (Yu
et al., 2021) as GREA and GSAT are their sophisticated
variants. We also excluded CIGAv2 (Chen et al., 2022a) as
GALA focuses on improving the contrastive sampling via
environment assistant for the objective in CIGAv1.

All methods adopted the same GIN backbone (Xu et al.,
2019) as the graph encoder, as well as an identical opti-
mization protocol for fair comparisons. We tuned the hyper-
parmeters following the recommended settings in previous
works. More details are given in Appendix E.2.

5.3. Experimental results and analysis

Controlled study with two-piece motif. The results in
Two-Piece Motif datasets are reported in Table 2. All the
previous environment augmentation approaches fail either in
datasets where the invariant correlations dominate or where
the spurious correlations dominate, which is consistent with
our discussions in Sec. 3. In particular, GREA, CIGA and
GIL achieve high performance when invariant correlation

strength is stronger, but suffer great performance decrease
when the spurious correlations are stronger. Although DisC
is expected to succeed when spurious correlations dominate,
DisC fails to outperform others because its excessive de-
struction of the learned information. MoleOOD could also
yield degraded performance, which is likely caused by the
failures of inferring reliable environment labels. In contrast,
GALA achieves consistently high performance under both
cases and improves CIGAv1 up to 3%, which validates our
theoretical results in Sec. 4.2.

OOD generalization performance in realistic graphs.
The results in realistic datasets are reported in Ta-
ble 3. Aligning with our previous discussion, DisC and
MoleOOD succeed in CMNIST-sp as the spurious corre-
lations in node features are much stronger than the graph
digit shape. However, GALA achieves an even higher per-
formance in CMNIST-sp and improves CIGA by 36%. As
for the other datasets, since there is no prior knowledge
about the dominance of invariant and spurious features, they
are particularly challenging for OOD generalization. The
results show that all the previous methods can suffer perfor-
mance degradation in some datasets. In contrast, owning to
the theoretical power of generalizing to both spurious and
invariant correlation dominated cases, GALA continues to
succeed and achieves the state-of-the-art performance under
the challenging realistic graph distribution shifts.

6. Conclusions
We conducted a retrospective study on the faithfulness of the
augmented environment information for OOD generaliza-
tion on graphs. By showing the impossiblility results of the
problems considered in existing approaches, we developed
a set of minimal assumptions for feasible invariant graph
learning. Built upon the assumptions, we further proposed
GALA to learn the invariant graph representations guided
by an environment assistant model. Extensive experiments
with 11 datasets verified the superiority of GALA.
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Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018. (Cited on page 1)

Wang, T. and Isola, P. Understanding contrastive represen-
tation learning through alignment and uniformity on the
hypersphere. In International Conference on Machine
Learning, pp. 9929–9939, 2020. (Cited on page 7)

Wolpert, D. and Macready, W. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, 1997. (Cited on pages 1 and 5)

Wu, Q., Zhang, H., Yan, J., and Wipf, D. Handling distri-
bution shifts on graphs: An invariance perspective. In
International Conference on Learning Representations,
2022a. (Cited on pages 1, 2, 3, 4, 13 and 14)

Wu, Y., Wang, X., Zhang, A., He, X., and Chua, T.-S. Dis-
covering invariant rationales for graph neural networks.
In International Conference on Learning Representations,
2022b. (Cited on pages 1, 3, 8, 14 and 15)

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., and
Jegelka, S. Representation learning on graphs with jump-
ing knowledge networks. In International Conference
on Machine Learning, pp. 5449–5458, 2018. (Cited on
pages 1 and 22)

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019. (Cited on pages 1,
8, 13, 15 and 22)

Xu, K., Zhang, M., Li, J., Du, S. S., Kawarabayashi, K.,
and Jegelka, S. How neural networks extrapolate: From
feedforward to graph neural networks. In International
Conference on Learning Representations, 2021. (Cited
on page 14)

Yang, N., Zeng, K., Wu, Q., Jia, X., and Yan, J. Learning
substructure invariance for out-of-distribution molecular
representations. In Advances in Neural Information Pro-
cessing Systems, 2022. (Cited on pages 1, 2, 3, 4, 8, 14,
15 and 23)



Rethinking Invariant Graph Representation Learning without Environment Partitions

Yehudai, G., Fetaya, E., Meirom, E., Chechik, G., and
Maron, H. From local structures to size generalization in
graph neural networks. In International Conference on
Machine Learning, pp. 11975–11986, 2021. (Cited on
page 14)

Yeung, R. Information Theory and Network Coding. 01
2008. ISBN 978-0-387-79233-0. (Cited on page 18)

Yu, J., Xu, T., Rong, Y., Bian, Y., Huang, J., and He, R.
Graph information bottleneck for subgraph recognition.
In International Conference on Learning Representations,
2021. (Cited on pages 3, 8 and 14)

Yu, J. C., Liang, J., and He, R. Finding diverse and
predictable subgraphs for graph domain generalization.
arXiv preprint arXiv:2206.09345, 2022. (Cited on pages
1, 3, 4 and 14)

Yuan, H., Yu, H., Gui, S., and Ji, S. Explainability in graph
neural networks: A taxonomic survey. arXiv preprint,
arXiv:2012.15445, 2020. (Cited on pages 8 and 22)

Zhang, M., Sohoni, N. S., Zhang, H. R., Finn, C., and
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A. Full Details of the Background
We give a more detailed background introduction about GNNs and Invariant Learning in this section.

Graph Neural Networks. Let G = (A,X) denote a graph with n nodes and m edges, where A ∈ {0, 1}n×n is the
adjacency matrix, and X ∈ Rn×d is the node feature matrix with a node feature dimension of d. In graph classification,
we are given a set of N graphs {Gi}Ni=1 ⊆ G and their labels {Yi}Ni=1 ⊆ Y = Rc from c classes. Then, we train a GNN
ρ ◦ h with an encoder h : G → Rh that learns a meaningful representation hG for each graph G to help predict their labels
yG = ρ(hG) with a downstream classifier ρ : Rh → Y . The representation hG is typically obtained by performing pooling
with a READOUT function on the learned node representations:

hG = READOUT({h(K)
u |u ∈ V }), (11)

where the READOUT is a permutation invariant function (e.g., SUM, MEAN) (Xu et al., 2019), and h(K)
u stands for the

node representation of u ∈ V at K-th layer that is obtained by neighbor aggregation:

h(K)
u = σ(WK · a({h(K−1)v }|v ∈ N (u) ∪ {u})), (12)

where N (u) is the set of neighbors of node u, σ(·) is an activation function, e.g., ReLU, and a(·) is an aggregation function
over neighbors, e.g., MEAN.

Graph generation process. This work focuses on graph classification, while the results generalize to node classification
as well using the same setting as in Wu et al. (2022a). Specifically, we are given a set of graph datasets D = {De}e
collected from multiple environments Eall. Samples (Gei , Y

e
i ) ∈ De from the same environment are considered as drawn

independently from an identical distribution Pe. We consider the graph generation process proposed by Chen et al. (2022a)
that covers a broad case of graph distribution shifts. Fig. 4 shows the full graph generation process considered in Chen
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Figure 4. Full SCMs on Graph Distribution Shifts (Chen et al., 2022a).

et al. (2022a). The generation of the observed graph G and labels Y are controlled by a set of latent causal variable C and
spurious variable S, i.e.,

G := fgen(C, S).

C and S control the generation of G by controlling the underlying invariant subgraph Gc and spurious subgraph Gs,
respectively. Since S can be affected by the environment E, the correlation between Y , S and Gs can change arbitrarily
when the environment changes. C and S control the generation of the underlying invariant subgraph Gc and spurious
subgraph Gs, respectively. Since S can be affected by the environment E, the correlation between Y , S and Gs can change
arbitrarily when the environment changes. Besides, the latent interaction among C, S and Y can be further categorized
into Full Informative Invariant Features (FIIF) when Y ⊥⊥ S|C and Partially Informative Invariant Features (PIIF) when
Y 6⊥⊥ S|C. Furthermore, PIIF and FIIF shifts can be mixed together and yield Mixed Informative Invariant Features (MIIF),
as shown in Fig. 4. We refer interested readers to Chen et al. (2022a) for a detailed introduction of the graph generation
process.

Invariant graph representation learning. To tackle the OOD generalization challenge on graphs from Fig. 4, the existing
invariant graph learning approaches generically aim to identify the underlying invariant subgraph Gc to predict the label
Y (Wu et al., 2022a; Chen et al., 2022a). Specifically, the goal of OOD generalization on graphs is to learn an invariant
GNN f := fc ◦ g, which is composed of two modules: a) a featurizer g : G → Gc that extracts the invariant subgraph Gc; b)
a classifier fc : Gc → Y that predicts the label Y based on the extracted Gc, where Gc refers to the space of subgraphs of G.
The learning objectives of fc and g are formulated as

maxfc, g I(Ĝc;Y ), s.t. Ĝc ⊥⊥ E, Ĝc = g(G). (13)

Since E is not observed, many strategies are proposed to impose the independence of Ĝc and E. A common approach
is to augment the environment information. For example, based on the estimated invariant subgraphs Ĝc and spurious
subgraphs Ĝs, Wu et al. (2022b); Liu et al. (2022); Wu et al. (2022a) proposed to generate new environments, while Yang
et al. (2022); Li et al. (2022) proposed to infer the underlying environment labels. However, we show that it is fundamentally
impossible to augment faithful environment information in Sec. 3. Yu et al. (2021); Miao et al. (2022); Yu et al. (2022);
Miao et al. (2023) adopt graph information bottleneck to tackle FIIF graph shifts, and they cannot generalize to PIIF shifts.
Our works focuses on PIIF shifts, as it is more challenging when without environment labels (Lin et al., 2022). Fan et al.
(2022) generalized (Lee et al., 2021) to tackle severe graph biases, i.e., when H(S|Y ) < H(C|Y ). Chen et al. (2022a)
proposed a contrastive framework to tackle both FIIF and PIFF graph shifts, but limited to H(S|Y ) > H(C|Y ). However,
in practice it is usually unknown whether H(S|Y ) < H(C|Y ) or H(S|Y ) > H(C|Y ) without environment information.

More OOD generalization on graphs. In addition to the aforementioned invariant learning approaches, Yehudai et al.
(2021); Bevilacqua et al. (2021); Zhou et al. (2022) study the OOD generalization as extrapolation from small graphs to
larger graphs in the task of graph classification and link prediction. In contrast, we study OOD generalization against various
graph distribution shifts formulated in Fig. 4. In addition to the standard OOD generalization tasks studied in this paper, Xu
et al. (2021); Mahdavi et al. (2022) study the OOD generalization in tasks of algorithmic reasoning on graphs. Jin et al.
(2022) study the test-time adaption in the graph regime. Kamhoua et al. (2022) study the 3D shape matching under the
presence of noises.
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Invariant learning without environment labels. There are also plentiful studies in invariant learning without environment
labels. Creager et al. (2021a) proposed a minmax formulation to infer the environment labels. Liu et al. (2021b) proposed
a self-boosting framework based on the estimated invariant and variant features. Liu et al. (2021a); Zhang et al. (2022)
proposed to infer labels based the predictions of an ERM trained model. However, Lin et al. (2022) found failure cases in
Euclidean data where it is impossible to identify the invariant features without given environment labels. Moreover, as the
OOD generalization on graphs is fundamentally more difficult than Euclidean data (Chen et al., 2022a), the question about
the feasibility of learning invariant subgraphs without environment labels remains unanswered.

B. More Details about the Failure Cases
We provide details about the failure case verification experiments in complementary to Sec. 3. The failure cases are
constructed according to the two-piece graph generation models. The specific description is given as the following.
Definition B.1 (3-class two-piece graphs). Each environment is defined with two parameters, αe, βe ∈ [0, 1], and the dataset
De is generated as follows:

(a) Sample ye ∈ {0, 1, 2} uniformly;

(b) Generate Gc and Gs via :
Gc := fGc

gen (Y · Rad(αe)), Gs := fGs
gen (Y · Rad(βe)),

where fGc
gen , f

Gs
gen respectively map input {0, 1, 2} to a specific graph selected from a given set, and Rad(α) is a random

variable with probability α taking a uniformly random value from {0, 1, 2}, and a probability of 1− α taking the value
of +1;

(c) Sythesize G by randomly concatenating Gc and Gs:

G := fGgen(Gc, Gs).

In experiments, we implement the 3-class two-piece graphs with the BA-motifs (Luo et al., 2020) model.

In experiments, we adopt a 3-layer GIN (Xu et al., 2019) with a hidden dimension of 32 and a dropout rate of 0.0 as the GNN
encoder. The optimization is proceeded with Adam (Kingma & Ba, 2015) using a learning rate of 1e− 3. All experiments
are repeated with 5 different random seeds of {1, 2, 3, 4, 5}. The mean and standard deviation are reported from the 5 runs.

We implement DIR (Wu et al., 2022b), GREA (Liu et al., 2022), MoleOOD (Yang et al., 2022), GIL (Li et al., 2022),
DisC (Fan et al., 2022), and CIGA (Chen et al., 2022a), according to the author provided codes (if available). As for the
hyperparameters in each method, we use a penalty weight of 1e− 2 for DIR following its original experiment in spurious
motif datasets generated similarly using BA-motifs (Wu et al., 2022b). We use a penalty weight of 1 for GREA as we
empirically it does not affect the performance by changing to different weights. For MoleOOD and GIL, we set the number
of environments as 3. We tune the penalty weights of MoleOOD with values from {1e − 2, 1e − 1, 1, 10} but did not
observe much performance differences. We tune the penalty weights of GIL with values from {1e − 5, 1e − 3, 1e − 1}
recommended by the authors. For DisC, we tune only the q weight from {0.9, 0.7, 0.5} in the GCE loss as we did not
observe performance differences by changing the weight of the other term. We tune the penalty weight of CIGA with values
from {0.5, 1, 2, 4, 8, 16, 32} as recommended by the authors.

C. Proofs for Theorems and Propositions
C.1. Proof of Proposition 3.2

Proposition C.1. (Restatement of Proposition 3.2) Consider the two-piece graph dataset Etr = {(α, β1), (α, β2)} with
α ≥ β1, β2 (e.g., Etr = {(0.25, 0.1), (0.25, 0.2)}), and its corresponding mixed environment Emix

tr = {(α, (β1 + β2)/2}
(e.g., Emix

tr = {(0.25, 0.15)}). It holds that the augmented environment Ev is also a two-piece graph dataset with

Ev = {(0.5, (β1 + β2)/2)} (e.g., Ev = {(0.5, 0.15)}).

Proof. From Definition 3.1, we known that for each graph Gi ∼ Emix
tr = {(α, (β1 + β2)/2)}, Gi is the concatenation of the

Gic and Gis defined as
Gic := fGc

gen (Yi · Rad(α)i), Gis := fGs
gen (Yi · Rad((β1 + β2)/2)i),
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where Rad(·)i denotes the ith sample of the random variable Rad(·).

Denote
GA = fGc

gen (+1), GB = fGc
gen (−1),

and
GC = fGs

gen (+1), GD = fGs
gen (−1),

Considering applying the augmentation to 2n samples randomly sampled from Emix
tr , since the featurizer g separates each

G ∈ Emix
tr into Ĝc = Gs and Ĝs = Gc, and the augmented graph Gi is obtained by

Gi,j = fGgen(Ĝic, Ĝ
j
s),∀i, j ∈ {1...n}.

Then, the new αv, βv in Ev can be obtained by summing up the overall numbers of GA, GB , GC , GD concatenated into 2n2

samples in Ev .

Specifically, we can inspect the changes of the distributions of motifs and labels. Let β̄ = (β1 + β2)/2, without loss of
generality, we focus on inspecting the changes given Y = +1, since the changes given Y = −1 is symmetric as Y = +1.
The original distribution is shown as follows:

Y = +1 GA GB
GC (1− α)(1− β̄)n α(1− β̄)n
GD (1− α)β̄n αβ̄n

Then, new distributions of the motifs and labels are determined by the number of original motifs identified as Ĝc and Ĝs,
respectively. When Ĝc = Gs and Ĝs = Gc, in the new environment Ev, given Y = +1, GC contributes (1 − β̄)n ∗ 2n
samples as the “invariant” subgraph. More specifically, GC will be concatenated with GA and GB by n times, respectively.
Then we have the new distribution tables shown as follows:

Y = +1 GA GB
GC (1− β̄)n2 (1− β̄)n2

GD β̄n2 β̄n2

Since given the same Y , the spurious subgraph GC and GD will still have the same chance being flipped, we have βv = β̄.
While as GA and GB appear the same times given the same Y , it suffices to know that αv = 0.5.

C.2. Proof of Theorem 3.3

Theorem C.2. (Restatement of Theorem 3.3) Given the same graph generation process as in Fig. 2, when there exists
spurious subgraph Gs such that P e1(Y |Gs) = P e2(Y |Gs) for any two environments e1, e2 ∈ Etr, where P e(Y |Gs) is the
conditional distribution P (Y |Gs) under environment e ∈ Eall, it is impossible for any learning algorithm applied to fc ◦ g
to differentiate Gc from Gs.

Proof. Let G∗s be the spurious subgraph such that P e1(Y |Gs) = P e2(Y |Gs) for any two environments e1, e2 ∈ Etr, and
Gc be the invariant subgraph which P e1(Y |Gc) = P e2(Y |Gc), ∀e1, e2 ∈ Etr by definition. Consider a learning algorithm
applied to fc ◦ g that accepts the input of Emix

tr , and extracts a subgraph Ĝc = g(Y ) as an estimation of the invariant subgraph
for any G to predict Y via fc(Ĝc) in a deterministic manner. If the algorithm succeed to extract Gc from Emix

tr , then there
always exists a Emix

tr
′ with the desired spurious subgraph G′s and a underlying invariant subgraph G′c, such that G′s = Gc

and G′c = G∗s . Due to the deterministic nature, the algorithm fails to identify G′c in Emix
tr
′.

C.3. Proof of Proposition 3.5

Proposition C.3. (Restatement of Proposition 3.5) There exist 2 two-piece graph training environments Etr and Etr
′, whose

mixed training environments are the same, such that any learning algorithm will fail to capture the invariance of at least one
of the training environments.
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Proof. Let the mixed training environment of Etr and Etr
′ be Emix

tr = {(α, β)}. Based on the definition of two-piece graphs
(Definition 3.1), the joint distribution of the mixed training dataset (G = Concat[Gc, Gs], Y ) can be computed as

Y = +1, with probability 0.5,

Y = −1, with probability 0.5,

BitGc(Gc) = BitGs(Gs) = Y, with probability (1− α)(1− β),

BitGc(Gc) 6= BitGs(Gs) = Y, with probability α(1− β),

BitGs(Gs) 6= BitGc(Gc) = Y, with probability (1− α)β,

BitGc(Gc) = BitGs(Gs) 6= Y, with probability αβ.

Here we use BitGc(Gc) to obtain the input bit of a subgraph Gc (or (fGc
gen )−1), and BitGs(Gs) for Gs, respectively.

Any learning algorithm that tries to identify the invariant subgraph from this training dataset will compute a model that uses
subgraph Gc, or subgraph Gs, or both Gc and Gs to predict Y deterministically. Thus, as long as the joint distribution does
not change, the resulting model will always identify the same invariant subgraph. Without loss of generality, let us assume
that the model correctly identifies Gc as the invariant subgraph for Etr = {(α, β1), (α, β2)} with β = (β1 + β2)/2.

Now let the other training environment be Etr
′ = {(α1, β), (α2, β)} with α = (α1 + α2)/2. It is clear that since the mixed

training environment of Etr
′ is still {(α, β)}, the model keeps regarding Gc as the invariant subgraph. However, for Etr

′, the
model fails to identify the invariance since now the invariant subgraph is Gs.

C.4. Proof of Corollary 3.7

Corollary C.4. (Restatement of Corollary 3.7) Without Assumption 3.6, then there does not exist a learning algorithm that
captures the invariance of all of the two-piece graph environments.

Proof. Consider a learning algorithm applied to fc ◦ g that accepts the input of Emix
tr , and extracts a subgraph Ĝc = g(Y ) as

an estimation of the invariant subgraph for any G to predict Y via fc(Ĝc) in a deterministic manner. Without the holding of
Assumption 3.6, due to Proposistion 3.5, there exists Emix

tr
′ for each Emix

tr that have the identical joint distribution but different
underlying invariant subgraph. Thus, any learning algorithm that succeeds in either Emix

tr or Emix
tr
′ will fail in the other.

C.5. Proof of Theorem 4.1

Theorem C.5. (Restatement of Theorem 4.1) Given, i) the same data generation process as in Fig. 2; ii) Dtr that satisfies
variation sufficiency (Assumption 3.4) and variation consistency (Assumption 3.6); iii) {Gp} and {Gn} are distinct subsets
of Dtr such that I(Gns ;Gps |Y ) = 0, ∀Gps arg maxĜp

s
I(Ĝps ;Y ) under {Gp}, and ∀Gns arg maxG̃n

s
I(G̃ns ;Y ) under {Gn};

suppose |Gc| = sc, ∀Gc, resolving the following GALA objective elicits an invariant GNN defined via Eq. 13,

max
fc,g

I(Ĝc;Y ), s.t. g ∈ arg max
ĝ,|Ĝp

c |≤sc
I(Ĝpc ; G̃

n
c |Y ), (14)

where G̃pc ∈ {Ĝpc = g(Gp)} and G̃nc ∈ {G̃nc = g(Gn)} are the estimated invariant subgraphs via g from {Gp} and {Gn},
respectively.

Proof. Without loss of generality, we assume that {Gp} has the same spurious dominance situation as Etr. In other words,
when H(S|Y ) < H(C|Y ), the data distribution in {Gp} also follows H(S|Y ) < H(C|Y ), while H(S|Y ) > H(C|Y ) in
{Gn}. To proceed, we will use the language of Chen et al. (2022a).

We begin by discussing the case of H(S|Y ) < H(C|Y ). Given H(S|Y ) < H(C|Y ), we have H(S|Y ) < H(C|Y ) in
{Gp} and H(S|Y ) > H(C|Y ) in {Gn}. Then, we claim that

Gc ∈ arg max
Ĝp

c ,|Ĝp
c |≤sc

I(Ĝpc ; G̃
n
c |Y ). (15)
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Otherwise, consider there exists a subgraph of the spurious subgraph Gps ⊆ Gs in Ĝpc , which takes up the space of Ĝlc ⊆ Gc
from Ĝpc . Then, we can inspect the changes to I(Ĝpc ; G̃

n
c |Y ) led by Gps :

4I(Ĝpc ; G̃
n
c |Y ) = 4H(Ĝpc |Y )−4H(Ĝpc |Ĝpc , G̃nc , Y )

=
[
H(Ĝlc, Ĝ

p
s |Y )−H(Ĝlc, Ĝ

p
c |Y )

]
−

[
H(Ĝlc, Ĝ

p
s |G̃nc , Y )−H(Ĝlc, Ĝ

p
c |G̃nc , Y )

]
=

[
H(Ĝps |Ĝlc, Y )−H(Ĝpc |Ĝlc, Y )

]
−

[
H(Ĝps |Ĝlc, G̃nc , Y )−H(Ĝpc |Ĝlc, G̃nc , Y )

]
,

(16)

where the last equality is obtained via expanding the conditional entropy. Then, considering the contents in G̃nc , without loss
of generality, we can divide all of the possible cases into two:

(i) G̃nc contains only the corresponding invariant subgraph Gnc ;

(ii) G̃nc contains from the corresponding spurious subgraph Gns , denoted as G̃ns ⊆ Gns ;

For case (i), it easy to write Eq. 16 as:

4I(Ĝpc ; G̃
n
c |Y ) =

[
H(Ĝps |Ĝlc, Y )−H(Ĝpc |Ĝlc, Y )

]
−

[
H(Ĝps |Ĝlc, G̃nc , Y )−H(Ĝpc |Ĝlc, G̃nc , Y )

]
,

= −H(Ĝpc |Ĝlc, Y ) +H(Ĝpc |Ĝlc, G̃nc , Y ),
(17)

since H(Ĝps |Ĝlc, Y ) = H(Ĝps |G̃nc , Ĝlc, Y ) = H(Ĝps |Y ) given C ⊥⊥ S|Y for PIIF shifts. Then, it suffices to know that
4I(Ĝpc ; G̃

n
c |Y ) ≤ 0 as conditioning on new variables will not increase the entropy (Yeung, 2008).

For case (ii), we have :

4I(Ĝpc ; G̃
n
c |Y ) =

[
H(Ĝps |Ĝlc, Y )−H(Ĝpc |Ĝlc, Y )

]
−

[
H(Ĝps |Ĝlc, G̃nc , Y )−H(Ĝpc |Ĝlc, G̃nc , Y )

]
,

=
[
−H(Ĝpc |Ĝlc, Y ) +H(Ĝpc |Ĝlc, G̃nc , Y )

]
+
[
H(Ĝps |Ĝlc, Y )−H(Ĝps |Ĝlc, G̃nc , Y )

]
,

(18)

where we claim that H(Ĝps |Ĝlc, Y ) − H(Ĝps |Ĝlc, G̃nc , Y ) = 0, and similarly conclude that 4I(Ĝpc ; G̃
n
c |Y ) ≤ 0. More

specifically, we can rewrite the first term in Eq. 18 as

H(Ĝps |Ĝlc, Y )−H(Ĝps |Ĝlc, G̃nc , Y ) = H(Ĝps |Y )−H(Ĝps |Ĝns , Y )

= I(Ĝps ; Ĝ
n
s |Y ) = 0,

using the variation condition for Ĝps under {Gp}, and G̃ns under {Gn}.

After showing the success of GALA in tackling H(S|Y ) < H(C|Y ), it is also suffices to know that the aforementioned
discussion also generalizes to the other case, i.e., whenH(S|Y ) > H(C|Y ) in {Gp} andH(S|Y ) < H(C|Y ) in {Gn}.
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D. More Discussions on Practical Implementations of GALA
In this section, we provide more implementation discussions about GALA in complementary to Sec. 4.3.

Environment assistant implementation. Theorem 4.1 shows the effectiveness of GALA when given proper subsets of
{Gp} and {Gn}. In practice, we can implement the environment assistant into multiple forms. As discussed in Sec. 4.1, ERM
trained model can serve as a reliable proxy. Since ERM tends to learn the first dominant features, whenH(S|Y ) < H(C|Y ),
ERM will firstly learn to extract spurious subgraphs Gs to make predictions. Therefore, we can obtain {Gp} by finding
samples where ERM correctly predicts the labels, while {Gn} for samples that ERM predicts an incorrect label. In addition
to direct label predictions, we can also adopt clustering (Zhang et al., 2022) to yield environment assistant predictions for
better contrastive sampling. We provide the detailed description of the clustering based variant of GALA in Algorithm 2.

Algorithm 2 GALA: Clustering based Graph invAriant Learning Assistant
1: Input: Training data Dtr; environment assistant A; featurizer g; classifier fc; length of maximum training epochs e;

batch size b;
2: Initialize environment assistant A;
3: for p ∈ [1, . . . , e] do
4: Sample a batch of data {Gi, Yi}bi=1 from Dtr;
5: Obtain Environment Assistant predictions {ĉei}bi=1 using k-means clustering on the graph representations yielded by

A;
6: for each sample Gi, yi ∈ {Gi, Yi}bi=1 do
7: Find postive graphs with same yi and different ĉei ;
8: Find negative graphs with different yi but same environment assistant prediction ĉei ;
9: Calculate GALA risk via Eq. 10;

10: Update fc, g via gradients from GALA risk;
11: end for
12: end for
13: return final model fc ◦ g;

Empirically, we find clustering based variant can provide better performance when the spurious correlations are well learned
by the environment assistant model. More concretely, we plot the umap visualizations (McInnes et al., 2018) of ERM trained
environment assistant model as in Fig. 5, where we can find that clustering predictions provide a better approximations to
the underlying group labels.

Besides, we can also incorporate models that are easier to overfit to the first dominant features to better differentiate
{Gp} from {Gn}. To demonstrate the difference of environment assistant implementations, we conduct more studies with
interpretable GNNs with a interpretable ratio of 30% trained with ERM and also with a CIGAv1 penalty of 4.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5

2

0

2

4

6

8

10

12
colored by group labels

(a) Colored by environment labels.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

2

0

2

4

6

8

10

12

colored by prediction

(b) Colored by label predictions.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5

2

0

2

4

6

8

10

12
colored by cluster prediction

(c) Colored by clustering predictions.

Figure 5. Umap visualizations of learned graph representations in ERM trained environment assistant model based on the 3-class
two-piece graph {0.7, 0.9}.

In Fig. 6 and Fig. 7, it can be found that the interpretable GNN learns hidden representations that are better clustered
with group labels. The clustering based predictions yields a better approximation of the underlying environment labels.
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Figure 6. Umap visualizations of learned graph representations in an interpretable GNN model (ratio=30%) trained with ERM based on
the 3-class two-piece graph {0.7, 0.9}.
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Figure 7. Umap visualizations of learned graph representations in an interpretable GNN model (ratio=30%) trained with ERM based on
the 3-class two-piece graph {0.7, 0.9}.

Furthermore, when implementing the environment assistant model using a interpretable GNN as well as a CIGAv1 penalty,
which facilitates the overfitting to the spurious correlations, then the vanilla label predictions can also yield a good
approximation of the underlying environment labels.
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Figure 8. Umap visualizations of learned graph representations of a interpretable GNN trained by ERM on EC50-Assay.

Although using the clustering predictions seem to be promising, we also find negative cases. For example, in DrugOOD
datasets, the number of curated environment labels are much larger that learning a well clusterd hidden representations for
the environment labels appears to be difficult. Shown as in Fig. 8 to Fig. 10, the learned representations have poor quality for
approximating the underlying environment labels. Empirically, we also find that direct using label predictions in DrugOOD
datasets generically yield better performance.

One-side contrastive sampling. The original supervised contrastive implementation (Khosla et al., 2020) takes positive
and negative samples within the batch using two-side contrastive sampling. That is, all the samples will be considered as
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Figure 9. Umap visualizations of learned graph representations of a interpretable GNN trained by ERM on EC50-Scaffold.
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Figure 10. Umap visualizations of learned graph representations of a interpretable GNN trained by ERM on EC50-Size.

anchor points. However, when it is used to contrast samples from Ĝpc and G̃nc , there could be undesired behaviors. First, it
can often happen that there are few to no negative cases when the spurious correlations are too strong. The samples from
{Gp} in a batch may pull the representations of samples from {Gn} to even closer, which makes the model further overfitted
to the spurious correlations. Second, the sampling over Ĝpc and G̃nc , can be seen as hard positive and negative samples,
that may impose a too strong regularizations that preventing the learning of any correlations. Therefore, we propose to use
one-side sampling. That is, only using the incorrectly predicted samples as anchor points. We empirically observe one-side
sampling could yield better performance in two-piece graphs.

E. More Details about the Experiments
In this section, we provide more details about the experiments, including the dataset preparation, baseline implementations,
models and hyperparameters selection as well as the evaluation protocols.

Table 4. Information about the datasets used in experiments. The number of nodes and edges are respectively taking average among all
graphs.

DATASETS # TRAINING # VALIDATION # TESTING # CLASSES # NODES # EDGES METRICS

TWO-PIECE GRAPHS {0.8, 0.6} 9, 000 3, 000 3, 000 3 26.14 36.21 ACC
TWO-PIECE GRAPHS {0.8, 0.7} 9, 000 3, 000 3, 000 3 26.18 36.27 ACC
TWO-PIECE GRAPHS {0.8, 0.9} 9, 000 3, 000 3, 000 3 26.13 36.22 ACC
TWO-PIECE GRAPHS {0.7, 0.9} 9, 000 3, 000 3, 000 3 26.13 36.22 ACC
CMNIST-SP 40, 000 5, 000 15, 000 2 56.90 373.85 ACC
GRAPH-SST2 24, 881 7, 004 12, 893 2 10.20 18.40 ACC
GRAPH-SST5 6, 090 1, 186 2, 240 5 19.85 37.70 ACC
TWITTER 3, 238 694 1, 509 3 21.10 40.20 ACC
EC50-ASSAY 4, 978 2, 761 2, 725 2 40.89 87.18 ROC-AUC
EC50-SCAFFOLD 2, 743 2, 723 2, 762 2 35.54 75.56 ROC-AUC
EC50-SIZE 5, 189 2, 495 2, 505 2 35.12 75.30 ROC-AUC



Rethinking Invariant Graph Representation Learning without Environment Partitions

E.1. Datasets

We provide more details about the motivation and construction method of the datasets that are used in our experiments.
Statistics of the datasets are presented in Table 4.

Two-piece graph datasets. We construct 3-class synthetic datasets based on BAMotif (Luo et al., 2020) following Def. B.1,
where the model needs to tell which one of three motifs (House, Cycle, Crane) the graph contains. For each dataset, we
generate 3000 graphs for each class at the training set, 1000 graphs for each class at the validation set and testing set,
respectively. Each dataset is defined with two variables {a, b} referring to the strength of invariant and spurious correlations.
Given {a, b}, we generate the training data following the percise generation process as Def. B.1. While for the generation of
validation sets, we use a bv = max(1/3, b− 0.2) that facilitates the model selection for OOD generalization (Gulrajani &
Lopez-Paz, 2021; Chen et al., 2022b). While for the generation of test datasets, we merely use a b = 0.33 that contains no
distribution shifts, to fully examine to what extent the model learns the invariant correlations. During the construction, we
merely inject the distribution shifts in the training data while keeping the testing data and validation data without the biases.

CMNIST-sp. To study the effects of PIIF shifts, we select the ColoredMNIST dataset created in IRM (Arjovsky et al., 2019).
We convert the ColoredMnist into graphs using super pixel algorithm introduced by Knyazev et al. (2019). Specifically, the
original Mnist dataset are assigned to binary labels where images with digits 0− 4 are assigned to y = 0 and those with
digits 5 − 9 are assigned to y = 1. Then, y will be flipped with a probability of 0.25. Thirdly, green and red colors will
be respectively assigned to images with labels 0 and 1 an averaged probability of 0.15 (since we do not have environment
splits) for the training data. While for the validation and testing data the probability is flipped to 0.9.

Graph-SST datasets. Inspired by the data splits generation for studying distribution shifts on graph sizes, we split the data
curated from sentiment graph data (Yuan et al., 2020), that converts sentiment sentence classification datasets Graph-SST2,
Graph-SST5 and SST-Twitter (Socher et al., 2013; Dong et al., 2014) into graphs, where node features are generated
using BERT (Devlin et al., 2019) and the edges are parsed by a Biaffine parser (Gardner et al., 2018). Our splits are
created according to the averaged degrees of each graph. Specifically, we assign the graphs as follows: Those that have
smaller or equal than 50-th percentile averaged degree are assigned into training, those that have averaged degree large than
50-th percentile while smaller than 80-th percentile are assigned to validation set, and the left are assigned to test set. For
Graph-SST2 and Graph-SST5 we follow the above process while for Twitter we conduct the above split in an inversed
order to study the OOD generalization ability of GNNs trained on large degree graphs to small degree graphs.

DrugOOD datasets. To evaluate the OOD performance in realistic scenarios with realistic distribution shifts, we also
include three datasets from DrugOOD benchmark (Ji et al., 2022). DrugOOD is a systematic OOD benchmark for AI-
aided drug discovery, focusing on the task of drug target binding affinity prediction for both macromolecule (protein
target) and small-molecule (drug compound). The molecule data and the notations are curated from realistic ChEMBL
database (Mendez et al., 2019). Complicated distribution shifts can happen on different assays, scaffolds and molecule
sizes. In particular, we select DrugOOD-lbap-core-ec50-assay, DrugOOD-lbap-core-ec50-scaffold,
and DrugOOD-lbap-core-ec50-size, from the task of Ligand Based Affinity Prediction which uses ic50 measure-
ment type and contains core level annotation noises. We directly use the data files provided by the authors. 3 For more
details, we refer interested readers to Ji et al. (2022).

E.2. Baselines and Evaluation Setup

During the experiments, we do not tune the hyperparameters exhaustively while following the common recipes for optimizing
GNNs. Details are as follows.

GNN encoder. For fair comparison, we use the same GNN architecture as graph encoders for all methods. By default,
we use 3-layer GIN (Xu et al., 2019) with Batch Normalization (Ioffe & Szegedy, 2015) between layers and JK residual
connections at the last layer (Xu et al., 2018). The hidden dimension is set to 32 for Two-piece graphs, CMNIST-sp, and 128
for SST5, Twitter, and DrugOOD datasets. The pooling is by default a mean function over all nodes. The only exception is
DrugOOD, where we follow the backbone used in the paper (Ji et al., 2022), i.e., 4-layer GIN with sum readout.

Interpretable GNN backbone. As mentioned in Sec. 2 that most of the existing invariant graph learning approaches adopt
the interpretable GNN as the basic backbone model for the whole predictor f = fc ◦ g, where g : G → Gc is a featurizer
GNN and fc : Gc → Y is a classifier GNN. g first calculates the sampling weights as in Ĝc for each edge. More formally,

3https://drugood.github.io/
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given a graph G containing n nodes, a soft mask is predicted through the following equation:

Z = GNN(G) ∈ Rn×h, M = a(Z,A) ∈ Rn×n,

where a calculates the sampling weights for each edge using a MLP: Mij = MLP([Zi, Zj ]). Based on the continuous
sampling score M , g could sample discrete edges according to the predicted scores. For two-piece graph datasets and
EC50-Assay, EC50-Scaffold, EC50-Size,, we will directly use the score to reweight the messaging passing process along the
edge, as we empirically find it yields more stable performance. While for CMNIST-sp, Graph-SST2, Graph-SST5, Twitter,
we will sample a ratio r% of all edges for each graph. The ratios adopted are 80%, 60%, 50%, 60%, respectively, following
previous works (Chen et al., 2022a; Ji et al., 2022).

Besides, we also have various implementation options for obtaining the features in Ĝc, for further obtaining hĜc
, as well as

for obtaining predictions based on Ĝs. By default, we feed the graph representations of featurizer GNN to the classifier
GNN, as well as to the contrastive loss. For classifying G based on Ĝs, we use a separate MLP downstream classifier in the
classifier GNN fc.

Optimization and model selection. By default, we use Adam optimizer (Kingma & Ba, 2015) with a learning rate of
1e− 3 and a batch size of 128 for all models at all datasets. Except for CMNIST-sp, we use a batch size of 256 to facilitate
the evaluation following previous works (Miao et al., 2022). To avoid underfitting, we pre-train models for 20 epochs for
all datasets by default. While in two-piece graphs, we find pre-training by 100 epochs yields more stable performance.
To avoid overfitting, we also employ an early stopping of 5 epochs according to the validation performance. Meanwhile,
dropout is also adopted for some datasets. Specifically, we use a dropout rate of 0.5 for CMNIST, Graph-SST2, Graph-SST5,
Twitter, EC50-Assay and EC50-Scaffold, 0.1 for EC50-Size according to the validation performance, following previous
works (Chen et al., 2022a).

The final model is selected according to the performance at the validation set. All experiments are repeated with 5 different
random seeds of {1, 2, 3, 4, 5}. The mean and standard deviation are reported from the 5 runs.

Implementations of Euclidean OOD methods. When implementing IRM (Arjovsky et al., 2019), V-Rex (Krueger et al.,
2021) and IB-IRM (Ahuja et al., 2021), we refer the implementations from DomainBed (Gulrajani & Lopez-Paz, 2021).
Since the environment information is not available, we perform random partitions on the training data to obtain two equally
large environments for these objectives following previous works (Creager et al., 2021a; Chen et al., 2022a). Moreover,
we select the weights for the corresponding regularization from {0.01, 0.1, 1, 10, 100} for these objectives according to the
validation performances of IRM and stick to it for others, since we empirically observe that they perform similarly with
respect to the regularization weight choice. For EIIL (Creager et al., 2021b), we use the author released implementations
about assigning different samples the weights for being put in each environment and calculating the IRM loss.

Implementations of invariant graph learning methods. We implement GSAT (Miao et al., 2022), GREA (Liu et al., 2022),
MoleOOD (Yang et al., 2022), GIL (Li et al., 2022), DisC (Fan et al., 2022), and CIGA (Chen et al., 2022a), according
to the author provided codes (if available). As for the hyperparameters in each method, we use a penalty weight of 1 and
a ratio of 0.7 for GSAT following the author-recommended implementations. We use a penalty weight of 1 for GREA
as we empirically it does not affect the performance by changing to different weights. We tune the penalty weights of
MoleOOD with values from {1e − 2, 1e − 1, 1, 10} but did not observe much performance differences. Hence we stick
the penalty weight as 1 for all datasets. We tune the penalty weights of GIL with values from {1e − 5, 1e − 3, 1e − 1}
recommended by the authors. For DisC, we tune only the q weight from {0.9, 0.7, 0.5} in the GCE loss as we did not
observe performance differences by changing the weight of the other term. We tune the penalty weight of CIGA with values
from {0.5, 1, 2, 4, 8, 16, 32} as recommended by the authors.

All of the graph learning methods adopt a interpretable GNN as the backbone by default. The only exception is MoleOOD,
we follow the original implementation while using a shared GNN encoder for the variational losses to ensure the fairness of
comparison. Besides, for DisC, we find the soft masking implementation in two-piece graphs will incur a sever performance
degeneration hence we use a ratio of 25% for the interpretable GNN backbone.

For environment inferring methods, we fix the number of environments in two-piece graphs as 3 (since there are 3 spurious
graphs), while search the number of inferred environments according to the validation performance. Specifically, in
CMNIST, Graph-SST2, Graph-SST5, we search the number of environments from {2, 3, 4} following previous practice (Li
et al., 2022). In DrugOOD datasets, we search the number of environments from {2, 5, 10, 20, 100} following previous
practice (Yang et al., 2022).
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Implementations of GALA. For a fair comparison, GALA uses the same GNN architecture for GNN encoders as the
baseline methods. By default, we fix the temperature to be 1 in the contrastive loss, and merely search the penalty
weight of the contrastive loss from {0.5, 1, 2, 4, 8, 16, 32} according to the validation performances, following the CIGA
implementations (Chen et al., 2022a). By default, we implement the environment assistant as a ERM model, and adopt
directly the environment assistant predictions to sample possible and negative graph pairs. Nevertheless, as discussed in
Sec. 4 that there could be multiple implementation choices for the environment assistant and the use of its predictions. In
experiments, we find that using specific implementations could improve the OOD performance. For two-piece graphs, we
implement the environment assistant model as an interpretable GNN with a ratio of 30% and adopt the cluster predictions of
the graph representations of the environment assistant model to sample positive and negative pairs. Since GALA imposes
a strong regularization to the data that may hinder the learning of graph representations, we pre-train the model by 10
epochs using ERM and then impose the GALA penalty implemented as one-side contrastive loss as discussed in Sec. D. For
CMNIST-sp, we find implementing the environment assistant model as an interpretable GNN trained with ERM yields better
performance. For Graph-SST2, Graph-SST5, Twitter, and DrugOOD datasets, we implement the environment assistant as a
ERM model while clustering the learned graph representations of the model to sample postive and negative pairs.

E.3. Software and Hardware

We implement our methods with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019). We ran our
experiments on Linux Servers installed with V100 graphics cards and CUDA 10.2.
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