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Graph Neural Networks (GNNs) Are Widely Applied

Model & Inference over Protein Interaction . .
. T Social Network Analysis
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Besides, GNNs

can also process
structures like

Image and text.
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GNNs Are Inherently Vulnerable
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Prediction: Pig @2

Adversarial noise

Prediction: Airliner ()

(Szegedy et al., 2014; Goodfellow et al., 2015; Kolter and Madry et al. 2019)
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Adversarial Attacks on GNNs
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Adversarial Attacks on GNNs
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Adversarial Objective:

Graph Modification Attack (GMA):

modificatio.ﬁ attack
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Adversarial Attacks on GNNs
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Adversarial Objective:

Graph Injection Attack (GlIA):
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Let’s find out more about GIA!

- through a friendly comparison -




The Power of Graph Injection Attack

Definition 1 (Threats)

Consider an adversary &, given a perturbation budget /\, the threat of & to a

GNN f, is defined as ”G,HgllllAfZatk( 1£+(G"Y), 1.e., the optimal objective value.

Theorem 1 (GIA is more harmful than GMA)

Given moderate perturbation budgets Ag, for GIA and Agya for GMA, that is, let
Aaia < Aoua < V| < |E], for a fixed linearized GNN f, trained on G, assume that G has

no isolated nodes, and both GIA and GMA follow the optimal strategy, then,
V Agma = 0,3 Agia £ Agua -

Z(Jo(GGia)) — L a(fo(Goma)) < 0.
where Ggpa and Giypa are perturbed graphs generated by GIA and GMA, respectively.




The Power of Graph Injection Attack

GMA Perturbation Budgets

0 250 500 750 1000 1250
90 - ' - -
v 80-
0
.S 70
(Vp) 60_ ________________________________ —0— GMA B
'§50 1
N —— GIA
+ 40 -
Q
= 301 .
20 - , : :
0 50 100 150 200 250
GIA Peturbation Budgets
GMA vs. GIA

Definition 2 (Plural Mapping ./ ,)
A plural mapping J, maps a perturbed graph Ggpa generated by GMA with only

llustration of J, mapping
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GMA vs. GIA with A,

edge addition perturbations®, to a GIA perturbed graph Giia = A 5(GGppa), such that:

]%’(GE}IA)M ZfQ(Gé}MA)w VueV.

*We can also find such mappings for other perturbation actions of GMA.



Is The Power of GIA A Free Lunch? &

It turns out to be NO. &
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The Pitfalls in Graph Injection Attack

Given the example of A, , assume GIA uses PGD to
optimize X, iteratively, we find:

sim(X , X ) < sim(X , X ),

where t is the number of optimization steps and stm( - ) is
the cosine similarity.

llustration of ., mapping

Definition 3 (Node-Centric Homophily)
The homophily of a node u can be defined with the similarity between the features of node

u and the aggregated features of its neighbors™:
1
h,=sim(r,X), r, = Z X,

J
jenw) 4/ did,

where d,, is the degree of node u and sim( - ) is a similarity metric, e.g., cosine similarity.

*We can also define edge-centric homophily, while we will focus on node-centric homophily.
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The Pitfalls in Graph Injection Attack

720 GIA provably leads more damage to the
St homophily of the original graph than GMA
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Homophily changes before and after attacks

Definition 3 (Homophily Defenders)
he homophily defenders can be implemented via edge pruning®:

H® = READOUT(W, - AGG(I__(u, V) {H* VY v € #(u) U {u})),

where [ (u, v) elaborates the pruning condition for edge (u, v).

*Essentially, homophily defenders can have other implementations than edge pruning.
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The Pitfalls in Graph Injection Attack

GMA Perturbation Budgets
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Theorem 2 (GIA loses power when against homophily defenders)

Given conditions in Theorem 1, consider a GIlA attack, which (i) is mapped by .#, from from a GMA attack
that only pertorms edge addition perturbations, and (ii) uses a linearized GNN trained with at least one
node from each class in G as the surrogate model, and (iii) optimizes the malicious node features with

PGD. Assume that G has no isolated node, and has node features as x, = cf -y, ———TleR‘where Y, is

the label of node u and e, € R4 is a one-hot vector with the Y -th entry being 1 and others being 0. Let the

minimum similarity for any pair of nodes connected in G be s, = min sim(X, X)) implemented with cosine
(u,v)eE

similarity. For a homophily defender g, that prunes edges (u, v) if sim(X,, X,) < s;, we have:

Z (8o H(Gma))) — Z a(86(Gma)) 2= 0.
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Unnoticeability in Graph Adversarial Attack
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Homophily Unnoticeable Graph Injection Attack

Definition 4 (Homophily Unnoticeability)
_et the node-centric homophily distribution for a graph G be ?’/G. Given the upper bound for

the allowed homophily distribution shift /A, > 0, an attack & is homophily unnoticeable if:
(I ) < N,

where G’ is the perturbed graph generated & and m( - ) is a distribution distance measure.

e —

Homophily Unnoticeability measures how likely the new connections
between the malicious nodes and target nodes will appear naturally.

Homophily Defender provides efficient check for
homophily unnoticeability serving as external examiners.
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Homophily Unnoticeable Graph Injection Attack

Definition 5 (Harmonious Adversarial Objective (HAQO))
Observing the homophily (Definition. 4) is differentiable with respect to X, we can integrate it into

the original adversarial objective as™
||G’£nGi|I|l<A L (Jp(G)) = Z i (fp(G)) — AC(G, G,
where C(G, G') is a regularization term based on homophily and A > 0 is the corresponding weight.

“We only use HAO to solve for G" while still using the original objective to evaluate the threats.

Theorem 3 (HAO re-empowers GIA)
Given conditions in Theorem 2, we have n(# g, # ¢, ) < m(# ¢, # ¢, ), hence:

Z (80(Gya0)) = Za(89(Gga)) <0,
where Giao and Ggpa are perturbed graphs generated by GIA with and without HAQO, respectively..
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Homophily Unnoticeable Graph Injection Attack

GMA Perturbation Bud(()gets GMA Perturbation Budgets
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Theorem 3 (HAO re-empowers GIA)

Given conditions in Theorem 2, we have n(# g, # ¢, ) < m(# ¢, # ¢, ), hence:

Z .4(8o(Gha0) — Zax(8e(Ggra)) £ 0,

-------- Injected

—tH— Pruned

lllustration of GIA at node u

where Giao and Ggpa are perturbed graphs generated by GIA with and without HAQO, respectively..
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HAO Re-empowers GIA

HAOQO significantly improves the pertormance of all attacks on all datasets up to 30%. Adaptive
injection strategies can further advance the state of the art.

Homo: Homophily Defenders Table 1: Performance of non-targeted attacks against different models

Vanilla: Vanilla GNNs Cora ({) Citeseer(].) Computers(].) Arxiv(])
HAO Homo Robust Combo Homo Robust Combo Homo Robust Combo Homo Robust Combo
e.g., GCN, GAT, GraphSage.
Clean 85.74 ~ 86.00 ~ 87.29 ~ 74.85 7546 7587  93.17 ~ 93.17 ~ 93.32  70.77 ~71.27  71.40
o PGD 83.08 83.08 85.74 74.70 74.70 75.19 84.91 84.91 91.41 68.18 68.18 71.11
Robust: Robust GNN PGD Vo 52.60 ~62.60 7799  69.05 ~ 69.06 ~ 73.04 ~79.33 7933 8783  55.38 ~ 62.89 68.68
models, or GNN models with MetaGIA T 83.61 83.61 85.86 74.70 74.70 75.15 84.91 84.91  91.41  68.47  68.47 71.09
: MetaGIA T v 49.25 69.83 76.80 68.04 68.04 71.25 78.96 78.96 90.25 57.05 63.30 69.97
robust tricks such as Iayer AGIAT 83.44 83.44 85.78 74.72 T4.72 75.29 85.21 85.21 91.40 68.07 68.07 71.01
normalisation, or adversarial AGIAT v . Ar24 6159 7525 70.24 70.24  71.80  75.14 ~ 75.14 ~ 86.02 ~ 59.32  65.62 69.92
frainin TDGIA 83.44 83.44 85.72 74.76 74.76 75.26 88.32 88.32 91.40 64.49 64.49 70.97
g. TDGIA v 56.95 73.38 79.45 60.91 60.91 72.51 7477 7477 90.42 49.36  60.72 63.57
ATDGIA 83.07 83.07 85.39 74.72 74.72 75.12 86.03 86.03 91.41 66.95 66.95 71.02
Combo: Robust GNN ATDGIA v 4218 70.30 ~ 7687 ~ 61.08 61.08 ~71.22  80.86  80.86 84.60 45.59  63.30 6431

*The lower number indicates better attack performance. ' Runs with SeqGIA framework on Computers and Arxiv.

such as layer normalisation,
or adversarial training.

We evaluate with 38 defense models and report the maximum mean test robustness from multiple runs.
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HAO Re-empowers GIA

HAOQO significantly improves the pertormance of all attacks on all datasets up to 15%. Adaptive

injection strategies can further advance the state of the art.

Homo: Homophily Defenders

Table 2: Performance of targeted attacks against different models

Vanilla: Vanilla GNNSs, Computers({.) Arxiv({) Aminer(]) Reddit({)
HAO Homo Robust Combo Homo Robust Combo Homo Robust Combo Homo Robust Combo
e.g., GCN, GAT, GraphSage.
Clean 92.68 ~92.68 9283  69.41 7159 72.09 6278  66.71 6697 ~ 94.05 ~ 97.15 97.13
Robust: Robust GNN PGD 88.13 88.13 91.56 69.19 69.19 71.31 53.16 53.16 56.31 02.44 92.44 93.03
. PGD Voo r1.7¢ 7178 8.8l 36.06 37.22 = 69.38  34.62 = 34.62 3947  56.44  86.12 84.94
mOdels’ or GNN mOdels Wlth MetaGIA T 87.67 87.67 91.56 69.28 69.28 71.22 48.97 48.97 52.35 02.40 92.40 93.97
robust tHCkS SUCh aS |ayer MetaGIAT v 70.21 71.61 85.83 38.44 38.44 48.06 41.12 41.12 45.16 46.75 90.06 90.78
| | | AGIAT 87.57 87.57 91.58 66.19 66.19 70.06 50.50 50.50 53.69 91.62 91.62 93.66
normalisation, or adversarial AGIAT v/ 6996 7158 8572  38.84 3884  68.97 3594 3594  42.66  80.69 8884  90.44
training TDGIA 87.21 87.21 91.56 63.66 63.66 71.06 51.34 51.34 54.82 92.19 92.19 93.62
' TDGIA v 71.39 71.62 77.15  42.56 42.56 42.53 25.78 25.78 29.94 78.16 85.06 88.66
_ ATDGIA 87.85 87.85 91.56 66.12 66.12 71.16 50.87 50.87 53.68 91.25 91.25 93.03
Combo: Robust GNN ATDGIA v 7200 72,53 7835 3828 4081 3947 2250 2250 2891 6409 8906 8891
models with robust tricks MLP 84.11 52.49 32.80 70.69

such as layer normalisation,
or adversarial training.

We evaluate with 38 defense models and report the maximum mean test robustness from multiple runs.

19
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HAO Re-empowers GIA

HAQO consistently improves the performances of all attacks on all datasets up to 5%. Adaptive injection
trategies can further advance the state of the art.

op)

Table 9: Full Averaged performance across all defense models

90
85 - —— GCN
Model Cora' Citeseer ' ComputersJr Arxiv' Arxiv? Computers'"t Aminer? Reddit? 80 — ;uLal;d
0 75
Clean 84.74 74.10 92.25 70.44 70.44 91.68 62.39 95.51 § 70 -
PGD 61.09 54.08 61.75 54.23 36.70 62.41 26.13 62.72 + 651
+HAO 56.63 48.12 59.16 45.05 28.48 59.09 22.15 56.99 3 60+
MetaGIA 60.56 53.72 61.75 53.69 28.78 62.08 32.78 60.14 > %51
+HAO 58.51 47.44 60.29 48.48 24.61 58.63 29.91 54.14 - %01 ——h——— A
AGIA 60.10 54.55 60.66 48.86 32.68 61.98 31.06 59.96 ﬂjﬁw+ ———o—
+HAO 53.79 48.30 58.71 48.86 29.52 58.37 26.51 56.36 25 |
TDGIA 66.86 52.45 66.79 49.73 31.68 62.47 32.37 57.97 90
+HAO 65.22 46.61 65.46 49.54 22.04 59.67 22.32 54.32 o5 | | | | | | |
ATDGIA 61.14 49.46 65.07 46.53 32.08 64.66 24.72 61.25 0.00 02 020 07 00 L2 150 Lo 200
+HAO  58.13  43.41 63.31 44.40 29.24 59.27 17.62  56.90 Regularziation Weight A

The lower is better. ' Non-targeted attack. *Targeted attack.

Varying 4 in HAO

We evaluate with 38 defense models and report the mean test robustness of all models from multiple runs.
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Summary

We provide a formal comparison between GIA and GMA in a unified setting and find
that GIA can be provably more harmful than GMA due to its high flexibility (Theorem 1).

However, the flexibility of GIA will cause severe damage to the homophily which

makes GIA easily defendable by homophily defenders (Theorem 2).

To mitigate the issue, we introduce the concept of homophily unnoticeability and a
novel objective HAO to conduct homophily unnoticeable attacks (Theorem 3).

Thank you!

Contact: ygchen@cse.cuhk.edu.hk
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Future Navigations
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If you focus on graph domain: more advanced injection strategies,

more downstream tasks, more attack scenarios, more robust GNNSs...
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If you focus on other domains: more unnoticeability constraints &
the corresponding external examiners...

Thank you!

Contact: ygchen@cse.cuhk.edu.hk
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