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Out-of-Distribution (OOD) generalization

Models learned with Empirical Risk Minimization are often: 

- prone to spurious correlations  

- can hardly generalize to OOD data   

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)
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Out-of-Distribution (OOD) generalization

( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

The goal of OOD generalization: 

given a subset of training environments/domains ,  
where each  corresponds to a dataset  and a loss . 

ℰtr ⊆ ℰall
e ∈ ℰ 𝒟e ℒe

min
f:𝒳→𝒴

max
e∈ℰall

ℒe( f )
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(Peters et al., 2015; Arjovsky et al., 2019; Bottou et al., 2021;)

Out-of-Distribution (OOD) generalization

Leveraging the Invariance Principle from causality,  

min
f=w∘φ ∑

e∈ℰtr

ℒe(w ∘ φ),

previous approaches aim to learn an invariant predictor ,  
that is simultaneously optimal across different environments/domains. 

f = w ∘ φ
s . t . w ∈ arg min

w̄
ℒe(w̄ ∘ φ), ∀e ∈ ℰtr
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(Peters et al., 2015; Arjovsky et al., 2019; Rosenfeld et al., 2021; Kamath et al., 2021; Ahuja et al., 2021;)

Out-of-Distribution (OOD) generalization

Leveraging the Invariance Principle from causality can: 

- help to learn the invariant representations  
- but only works on linear regime 
- but only works on single distribution shifts 
- but requires environment/domain label 

🥲 
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OOD generalization on graphs are more challenging
OOD generalization on graphs  
are much more challenging!

• Graphs are highly non-linear 
• Attribute-level shifts 

(Peng et al., 2019; Knyazev et al., 2019; Hu et al., 2020; DeGrave et al. 2021; Ji et al., 2022)
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OOD generalization on graphs are more challenging
OOD generalization on graphs  
are much more challenging!

• Graphs are highly non-linear 
• Attribute-level shifts 
• Structure-level shifts 
• Mixed shifts in different modes 
• Expensive domain labels

OOD failures of GNNs training objectives and architectures

(Peng et al., 2019; Knyazev et al., 2019; Hu et al., 2020; DeGrave et al. 2021; Ji et al., 2022)

Mixed with graph size shiftsStructure and attribute shifts Structure and attribute shifts
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As existing approaches are down…

How can we define and capture the invariance on graphs?

Can we train a GNN that is generalizable to OOD data?
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Invariance Principle Meets Graph Neural Networks
for generalizing to out-of-distribution graph data

Figure source: Léon Bottou
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Structural Causal Models

Reality examples

Graph Generation Process:

fgen : 𝒵 → 𝒢

C S Spurious featuresInvariant features

GOOD: Graph Out-Of-Distribution framework
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Structural Causal Models

Graph Generation Process:

fgen : 𝒵 → 𝒢

C S Spurious featuresInvariant features

GOOD: Graph Out-Of-Distribution framework
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Structural Causal Models

Step 1: Invariant subgraph identification

Step 2: Label prediction

Overall objective

Featurizer GNN g : 𝒢 → 𝒢c

Classifier GNN fc : 𝒢c → 𝒴

GOOD: Graph Out-Of-Distribution framework
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GOOD: Graph Out-Of-Distribution framework

Structural Causal Models

GOODv1: when  is known and fixed|Gc | = sc

GOODv2: eliminate the size constraint
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OOD Performance under various distribution shifts

GOOD outperform previous methods under structure and mixed shifts by a significant margin up to 10%.

Theoretical results (Informal):
Given the previous SCMs, each solution to GOODv1  or GOODv2 elicits a GNN that is generalizable 
against various distribution shifts, with some mild assumptions on training environments, and the 
expressivity of GNNs encoders. 
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OOD Performance under various distribution shifts

GOOD outperform previous methods under other realistic shifts by a significant margin up to 10%.

Theoretical results (Informal):
Given the previous SCMs, each solution to GOODv1  or GOODv2 elicits a GNN that is generalizable 
against various distribution shifts, with some mild assumptions on training environments, and the 
expressivity of GNNs encoders. 



Summary

Through the lens of causality, we establish general SCMs to characterize the 
distribution shifts on graphs, and generalize the invariance principle to graphs.

We instantiate the invariance principle through a novel framework GOOD, where 
the prediction is decomposed into the subgraph identification and classification.

We show that the provable identification of the underlying invariant subgraph can 
be achieved using a contrastive strategy both theoretically and empirically.
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