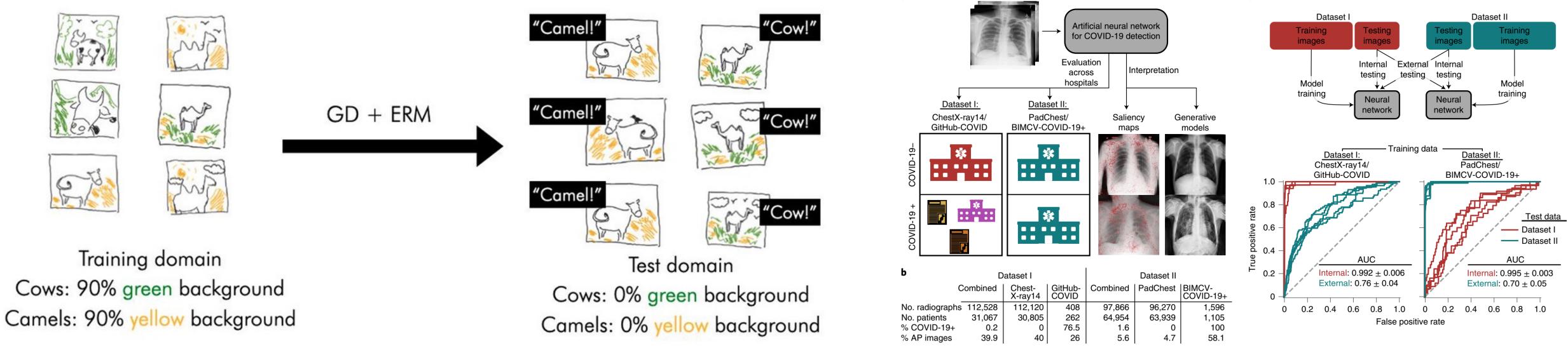


Invariance Principle Meets Out-of-Distribution Generalization on Graphs

Yonggiang Chen CUHK

with Yonggang Zhang, Yatao Bian, Han Yang, Binghui Xie, Kaili Ma, Tongliang Liu, Bo Han, and James Cheng

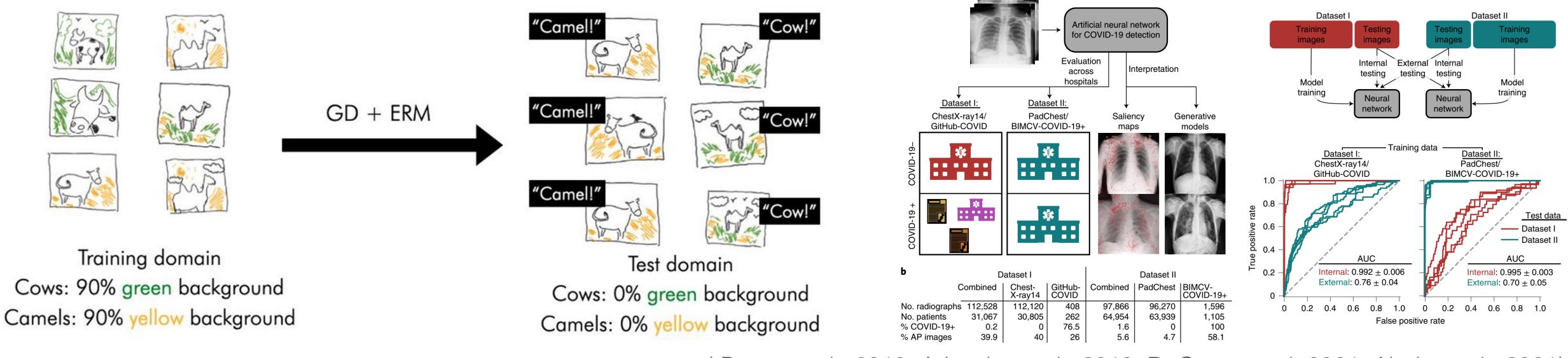


(Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

Models learned with Empirical Risk Minimization are often:

- prone to **spurious correlations**

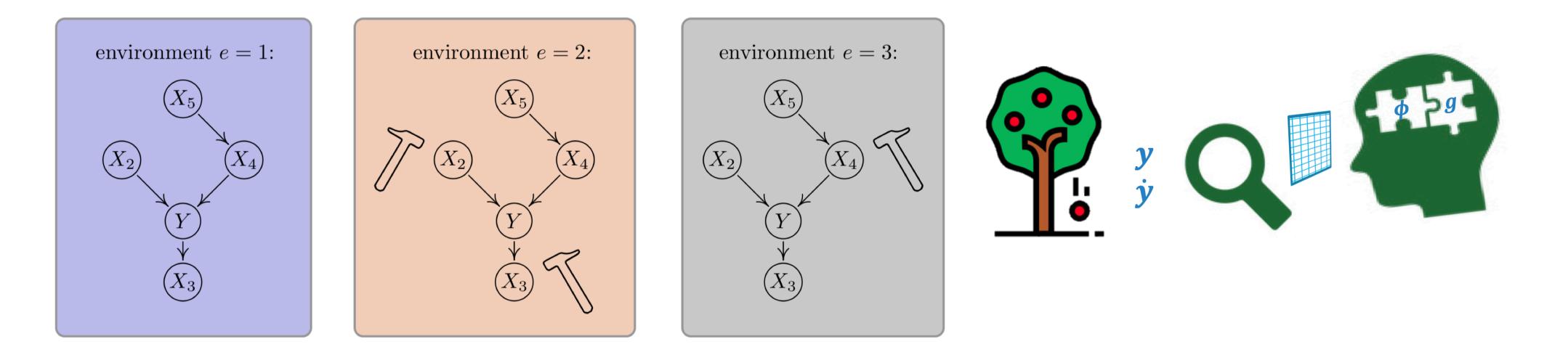
- can hardly generalize to **OOD** data



(Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021)

The goal of OOD generalization:

 $\min_{f:\mathcal{X} \to \mathcal{Y}} \max_{e \in \mathscr{E}_{all}} \mathscr{L}_e(f)$ given a subset of training **environments**/domains $\mathscr{C}_{tr} \subseteq \mathscr{C}_{all}$, where each $e \in \mathscr{E}$ corresponds to a dataset \mathscr{D}_{ρ} and a loss \mathscr{L}_{ρ} .



Leveraging the **Invariance Principle** from causality,

$$\min_{\substack{f=w\circ\varphi\\e\in\mathscr{E}_{\mathrm{tr}}}}\sum_{e\in\mathscr{E}_{\mathrm{tr}}}\mathscr{L}_{e}(\mathbf{x})$$

s.t. $w\in \arg\min_{\bar{W}}\mathscr{L}_{e}(\mathbf{x})$

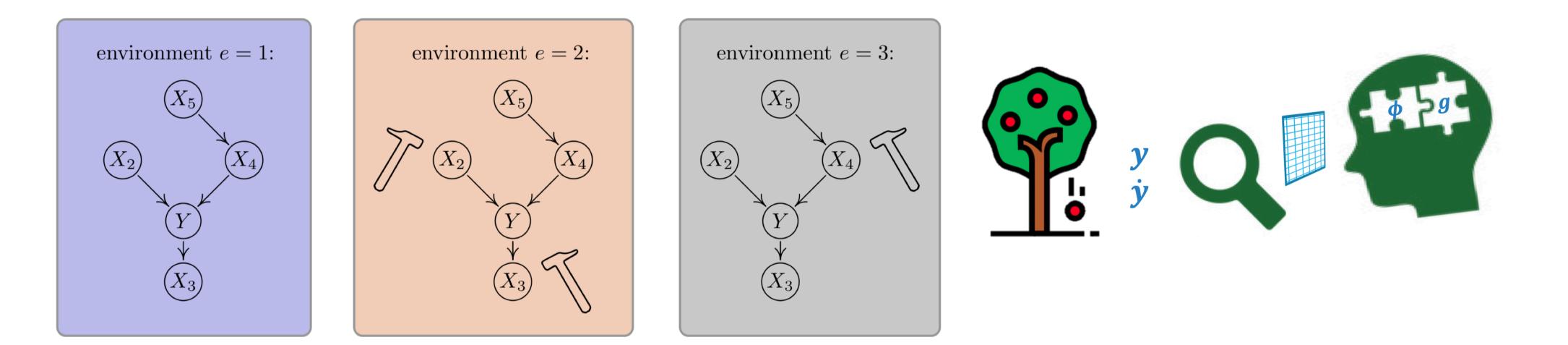
previous approaches aim to learn an **invariant** predictor $f = w \circ \phi$,

that is **simultaneously optimal** across different environments/domains.

 $(w \circ \varphi),$

 $\nabla_{e}(\bar{w} \circ \varphi), \, \forall e \in \mathscr{E}_{\mathrm{tr}}$

(Peters et al., 2015; Arjovsky et al., 2019; Bottou et al., 2021;)

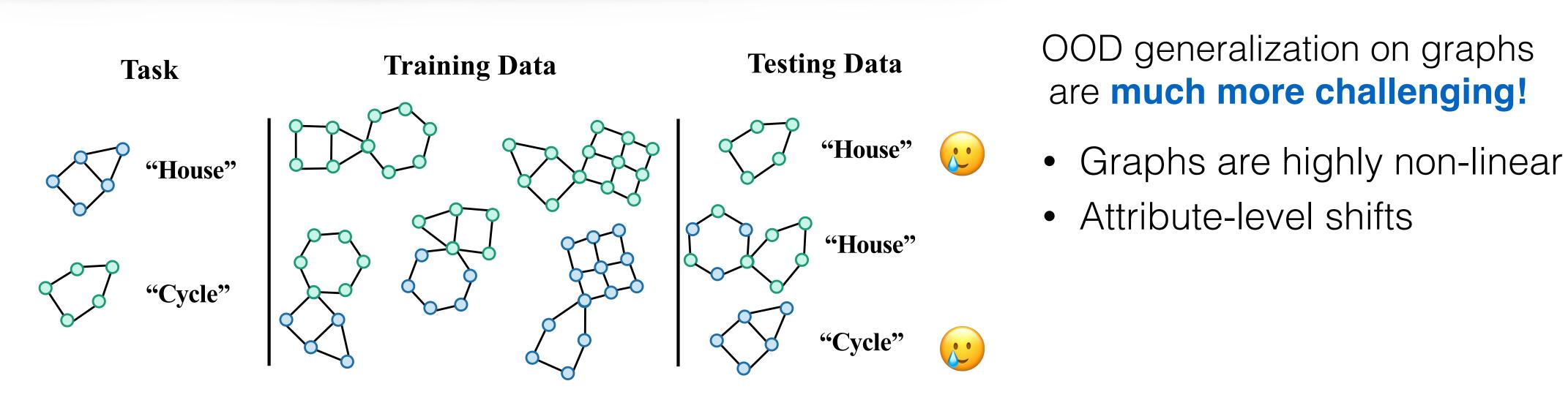


Leveraging the **Invariance Principle** from causality can:

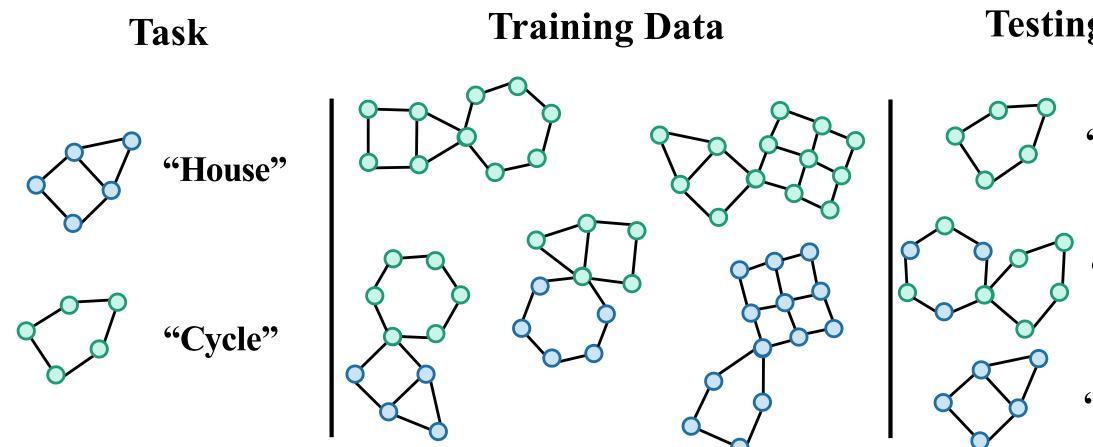
- but only works on **linear** regime -
- -

(Peters et al., 2015; Arjovsky et al., 2019; Rosenfeld et al., 2021; Kamath et al., 2021; Ahuja et al., 2021;)

help to learn the invariant representations but only works on **single** distribution shifts but requires environment/domain label

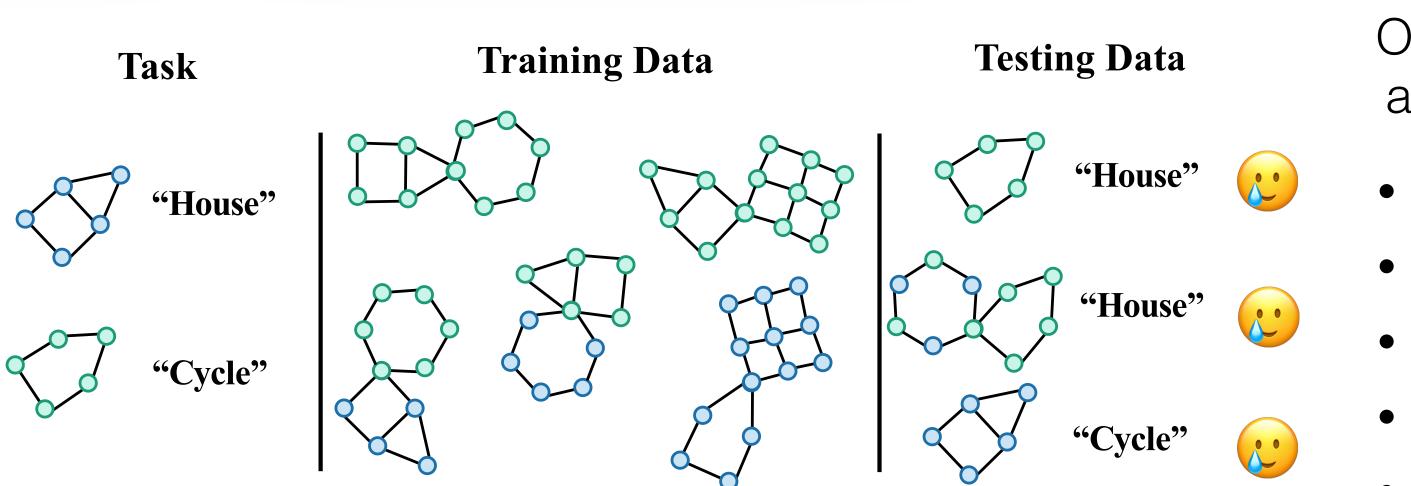


(Peng et al., 2019; Knyazev et al., 2019; Hu et al., 2020; DeGrave et al. 2021; Ji et al., 2022)



(Peng et al., 2019; Knyazev et al., 2019; Hu et al., 2020; DeGrave et al. 2021; Ji et al., 2022)

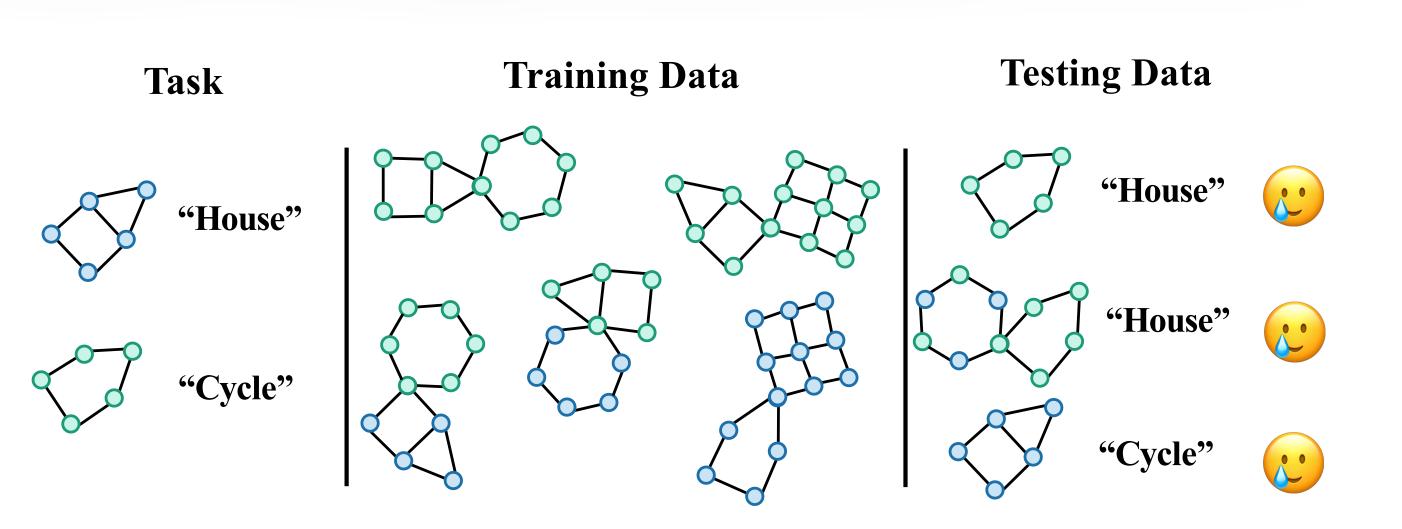
ng Data	OOD generalization on graphs are much more challenging!
"House" "House"	 Graphs are highly non-linear Attribute-level shifts Structure-level shifts
"Cycle"	



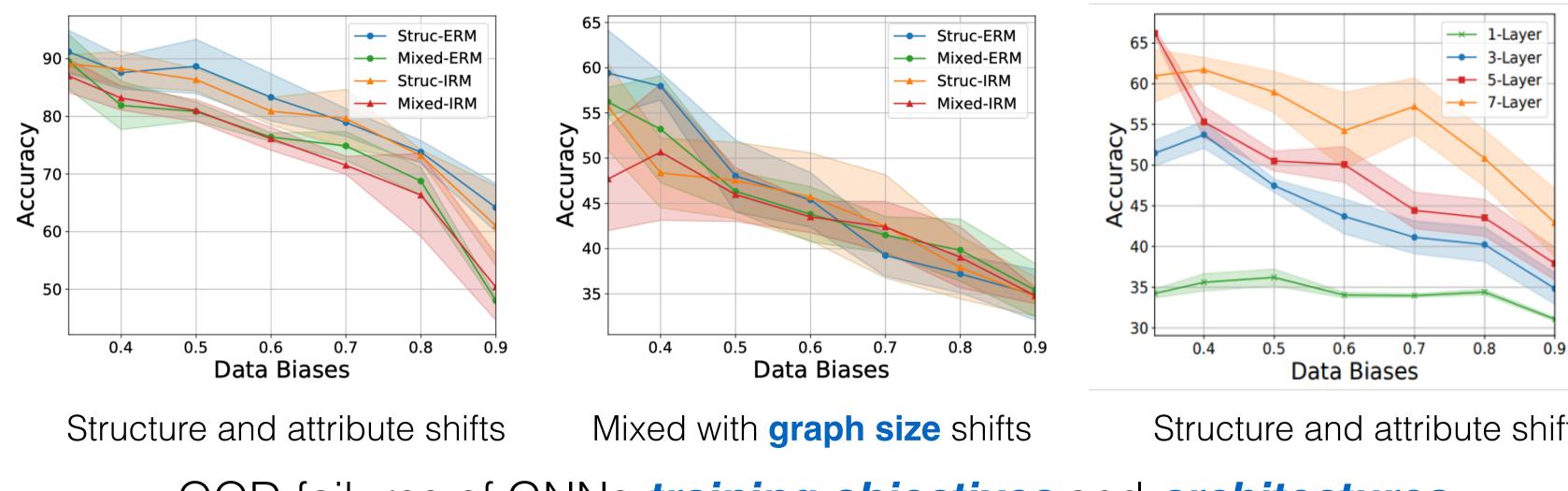
(Peng et al., 2019; Knyazev et al., 2019; Hu et al., 2020; DeGrave et al. 2021; Ji et al., 2022)

OOD generalization on graphs are **much more challenging!**

- Graphs are highly non-linear
- Attribute-level shifts
- Structure-level shifts
- Mixed shifts in different modes
- Expensive domain labels



(Peng et al., 2019; Knyazev et al., 2019; Hu et al., 2020; DeGrave et al. 2021; Ji et al., 2022)

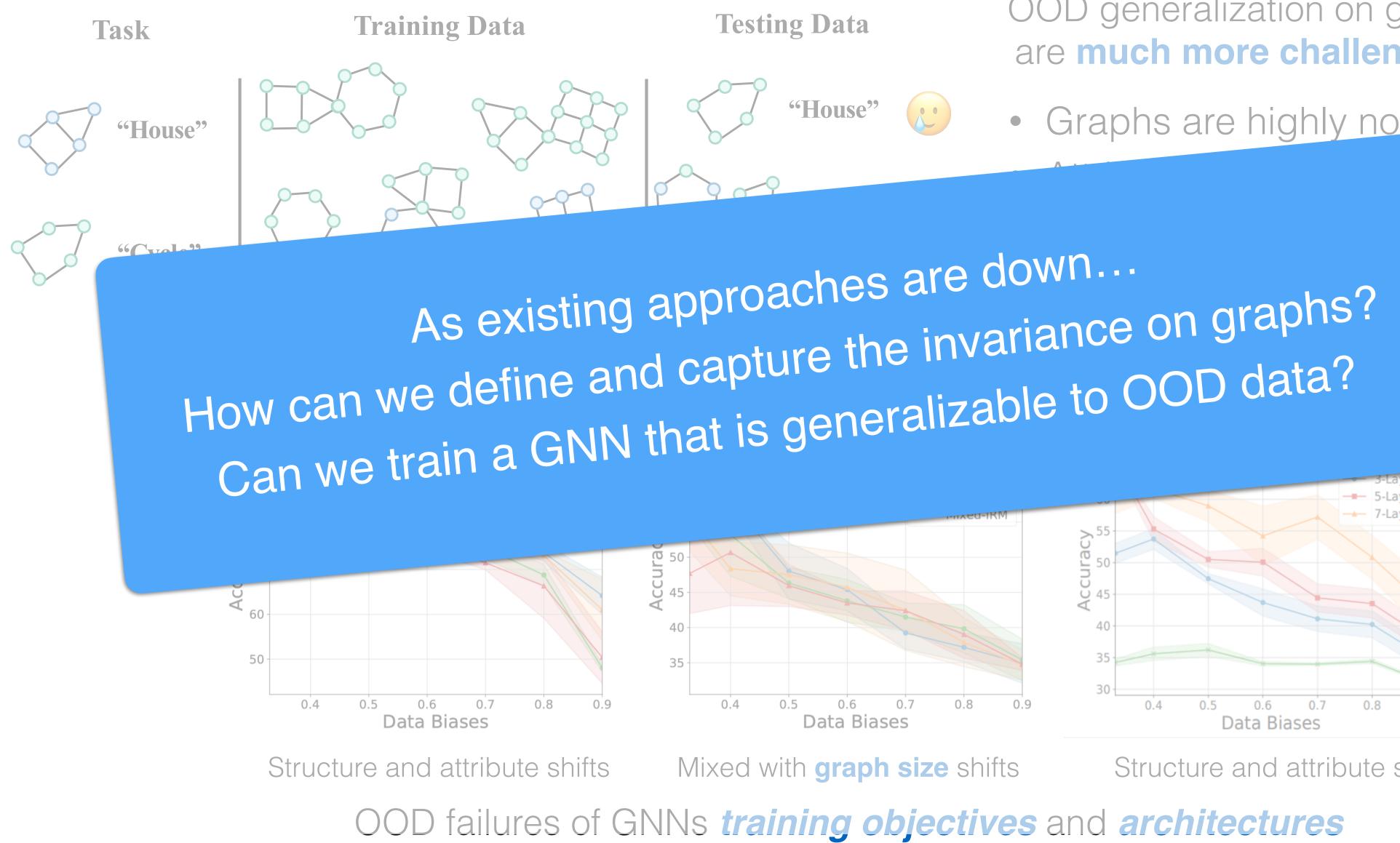


OOD generalization on graphs are much more challenging!

- Graphs are highly non-linear
- Attribute-level shifts
- Structure-level shifts
- Mixed shifts in different modes
- Expensive domain labels

Structure and attribute shifts

OOD failures of GNNs *training objectives* and *architectures*



OOD generalization on graphs are much more challenging!

• Graphs are highly non-linear

Accuracy 42 42

Structure and attribute shifts

0.7

0.6

Data Biases

0.5

0.4

5-Layer

0.8

7-Layer

10

modes

Invariance Principle Meets Graph Neural Networks

for generalizing to out-of-distribution graph data

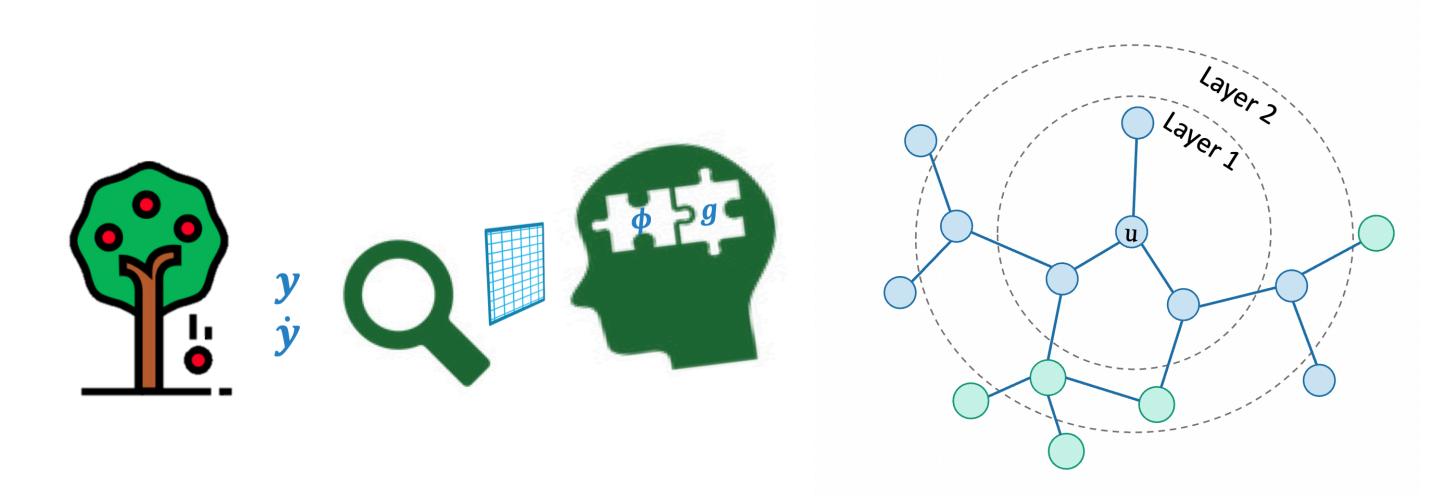
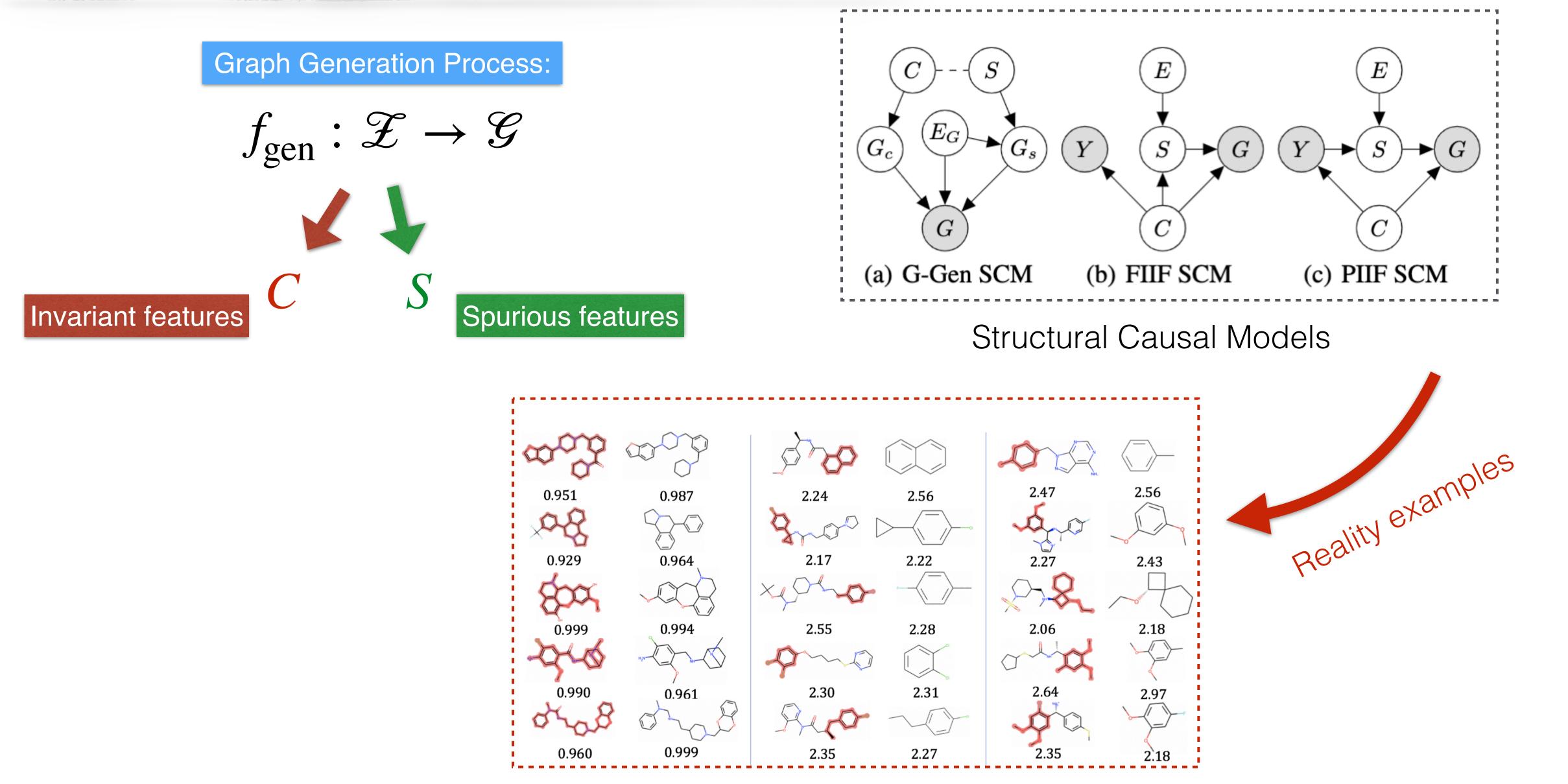
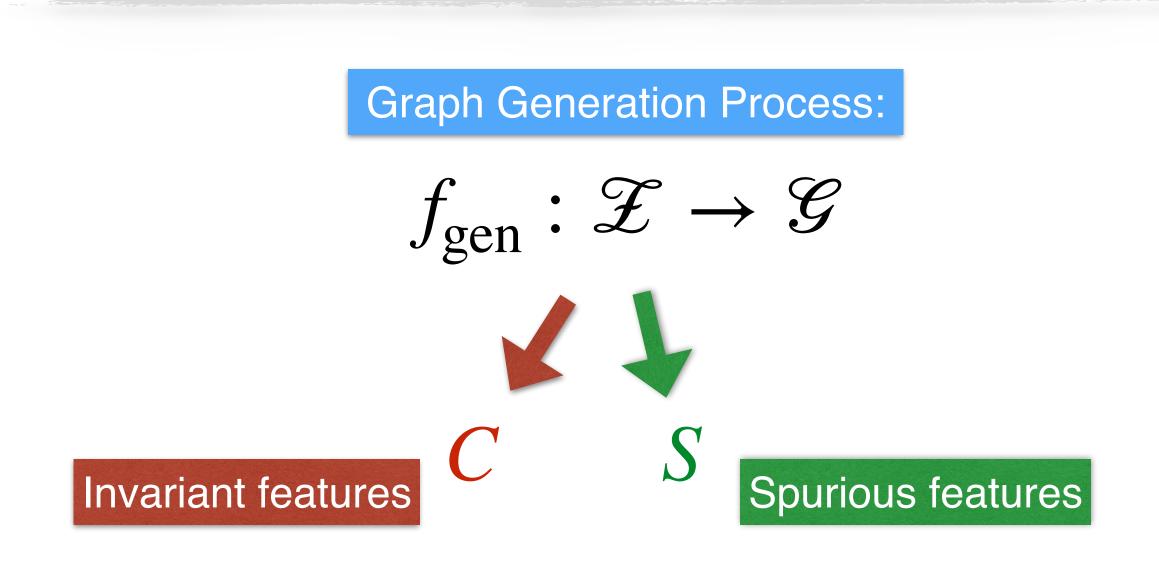
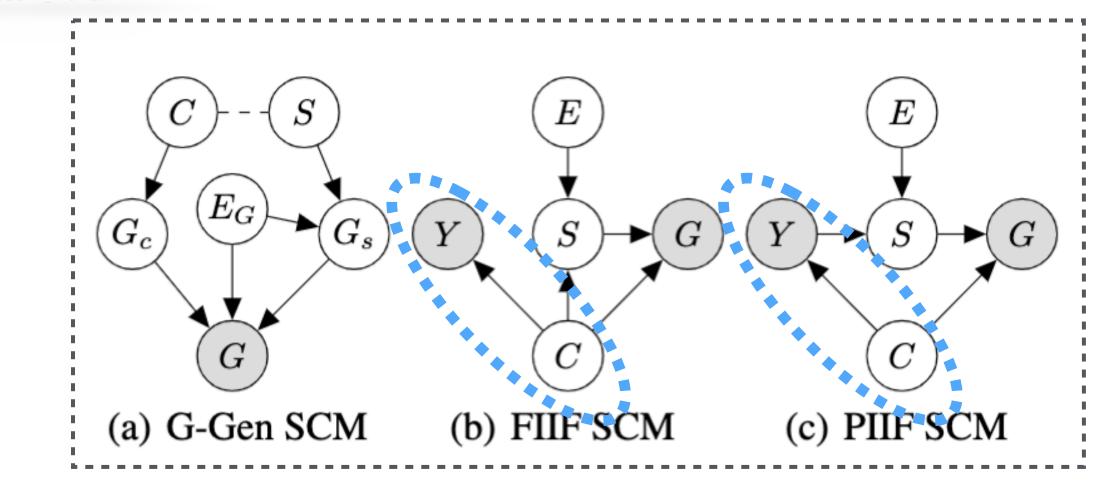


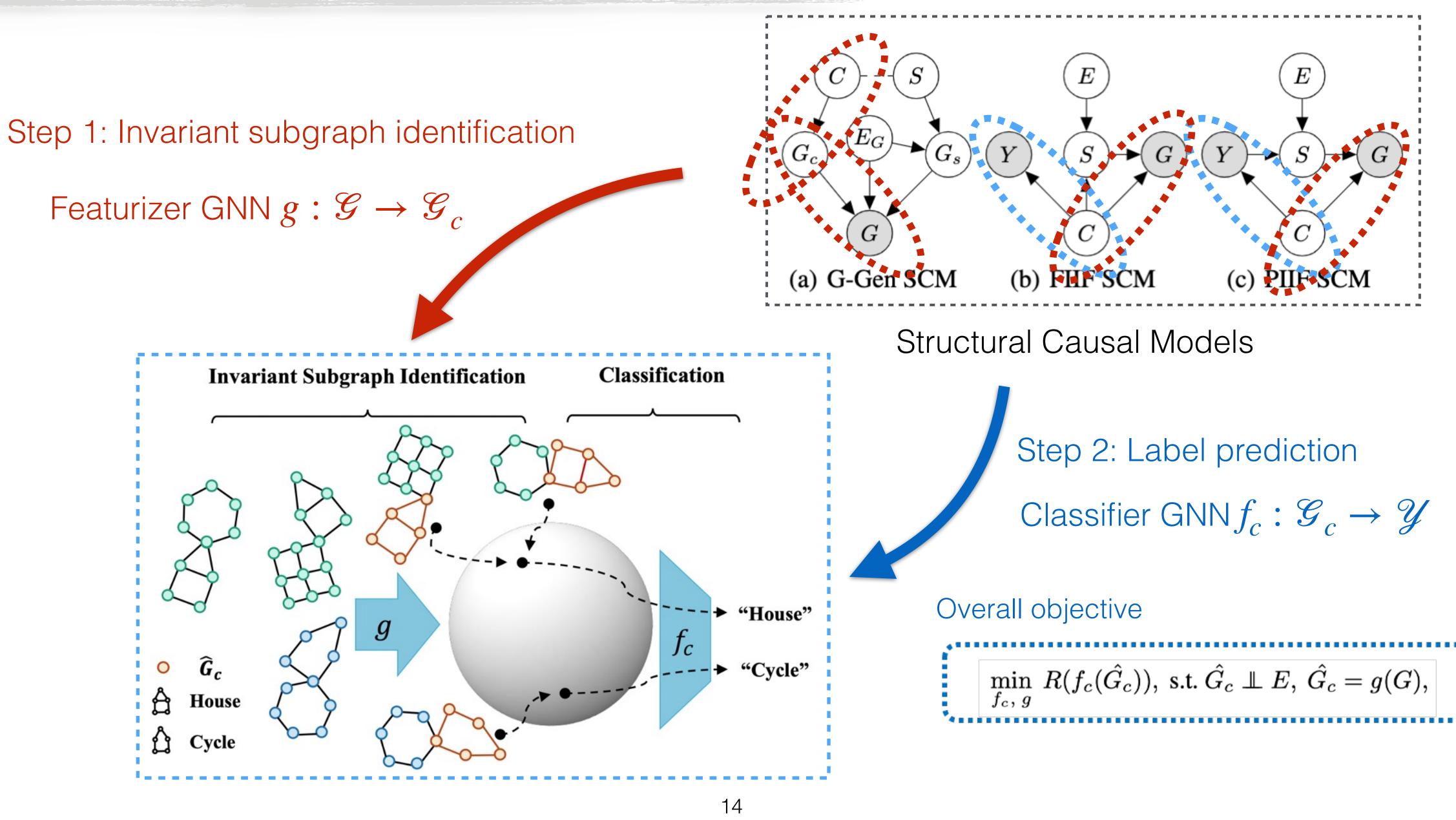
Figure source: Léon Bottou

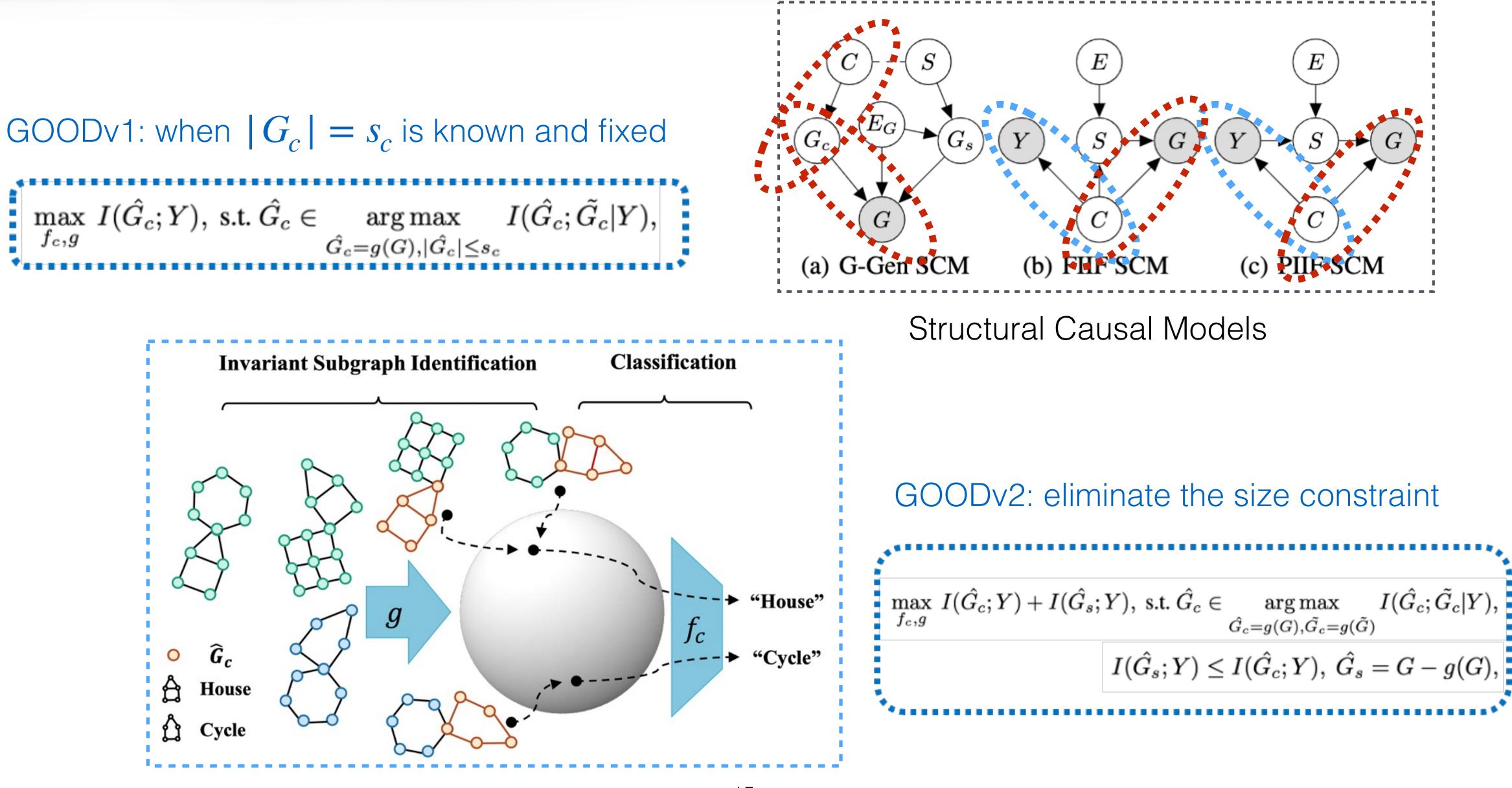


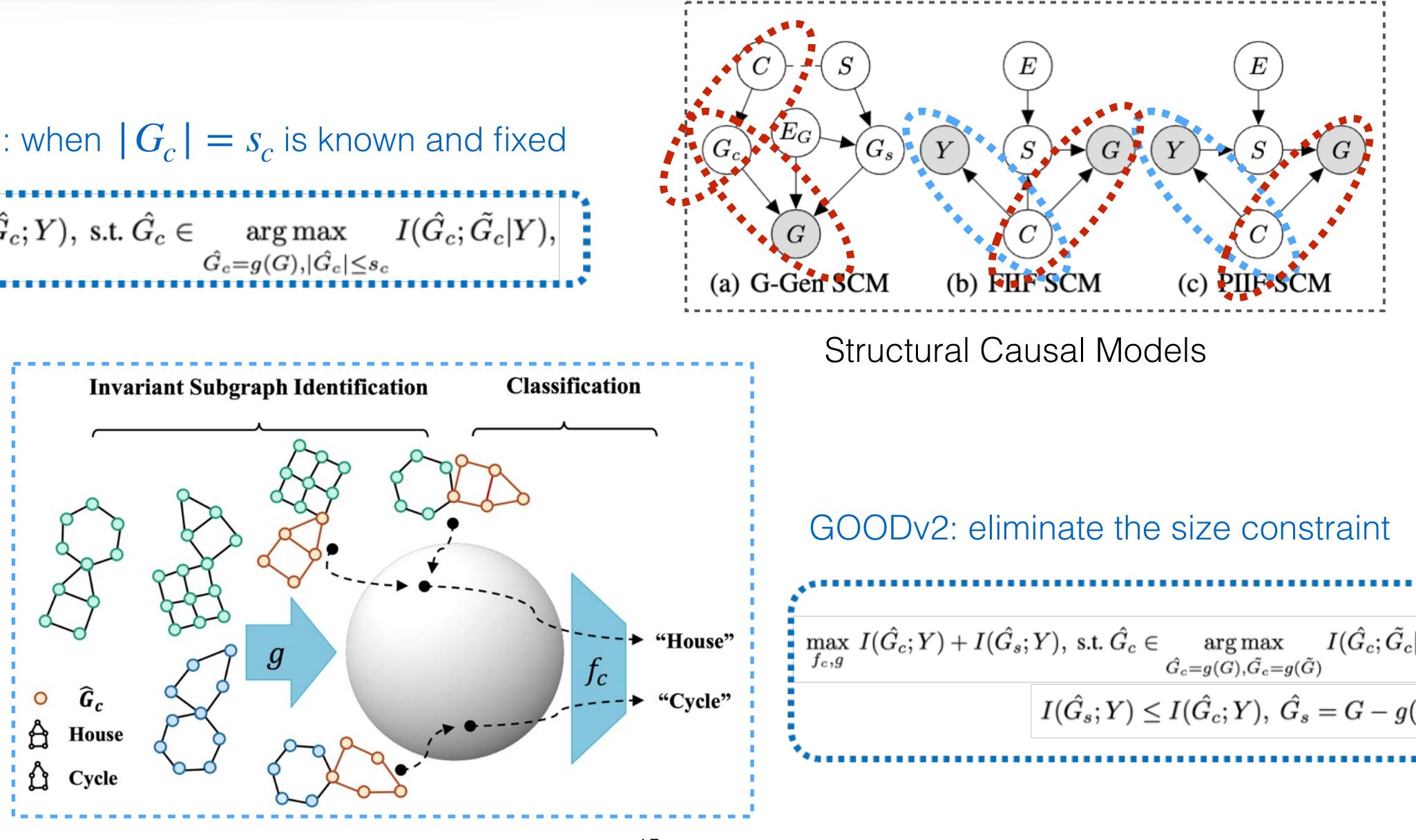




Structural Causal Models







OOD Performance under various distribution shifts

Theoretical results (Informal):

Given the previous SCMs, each solution to GOODv1 or GOODv2 elicits a GNN that is generalizable against various distribution shifts, with some mild assumptions on training environments, and the expressivity of GNNs encoders.

	<u>c</u>	SPMOTIF-STRUC	†	SPMOTIF-MIXED [†]					
	BIAS=0.33	BIAS=0.60	BIAS=0.90	BIAS=0.33	BIAS=0.60	BIAS=0.90	AVG		
ERM	59.49 (3.50)	55.48 (4.84)	49.64 (4.63)	58.18 (4.30)	49.29 (8.17)	41.36 (3.29)	52.24		
ASAP	64.87 (13.8)	64.85 (10.6)	57.29 (14.5)	66.88 (15.0)	59.78 (6.78)	50.45 (4.90)	60.69		
DIR	58.73 (11.9)	48.72 (14.8)	41.90 (9.39)	67.28 (4.06)	51.66 (14.1)	38.58 (5.88)	51.14		
IRM	57.15 (3.98)	61.74 (1.32)	45.68 (4.88)	58.20 (1.97)	49.29 (3.67)	40.73 (1.93)	52.13		
V-REX	54.64 (3.05)	53.60 (3.74)	48.86 (9.69)	57.82 (5.93)	48.25 (2.79)	43.27 (1.32)	51.07		
EIIL	56.48 (2.56)	60.07 (4.47)	55.79 (6.54)	53.91 (3.15)	48.41 (5.53)	41.75 (4.97)	52.73		
IB-IRM	58.30 (6.37)	54.37 (7.35)	45.14 (4.07)	57.70 (2.11)	50.83 (1.51)	40.27 (3.68)	51.10		
CNC	70.44 (2.55)	66.79 (9.42)	50.25 (10.7)	65.75 (4.35)	59.27 (5.29)	41.58 (1.90)	59.01		
GOODv1	71.07 (3.60)	63.23 (9.61)	51.78 (7.29)	74.35 (1.85)	64.54 (8.19)	49.01 (9.92)	62.33		
GOODv2	77.33 (9.13)	69.29 (3.06)	63.41 (7.38)	72.42 (4.80)	70.83 (7.54)	54.25 (5.38)	67.92		

[†]Higher accuracy and lower variance indicate better OOD generalization ability.

GOOD outperform previous methods under *structure and mixed shifts* by a significant margin up to **10%**.

Table 3. OOD generalization performance on structure and mixed shifts for synthetic graphs.

OOD Performance under various distribution shifts

Theoretical results (Informal):

Given the previous SCMs, each solution to GOODv1 or GOODv2 elicits a GNN that is generalizable against various distribution shifts, with some mild assumptions on training environments, and the expressivity of GNNs encoders.

Tal	ble 4. OOD gei	neralization pe	erformance on	complex disti	ribution shifts f	or real-world	graphs.						
DATASETS	Drug-Assay	DRUG-SCA	Drug-Size	CMNIST-SP	GRAPH-SST5	Twitter	AVG (RANK) [†]	DATASETS	NCI1	NCI109	PROTEINS	DD	AVG
ERM ASAP GIB DIR	71.79 (0.27) 70.51 (1.93) 63.01 (1.16) 68.25 (1.40)	68.85 (0.62) 66.19 (0.94) 62.01 (1.41) 63.91 (1.36)	66.70 (1.08) 64.12 (0.67) 55.50 (1.42) 60.40 (1.42)	13.96 (5.48) 10.23 (0.51) 15.40 (3.91) 15.50 (8.65)	43.89 (1.73) 44.16 (1.36) 38.64 (4.52) 41.12 (1.96)	60.81 (2.05) 60.68 (2.10) 48.08 (2.27) 59.85 (2.98)	54.33 (6.00) 52.65 (8.33) 47.11 (10.0) 51.51 (9.33)	ERM ASAP GIB DIR IRM V-REX	0.15 (0.05) 0.16 (0.10) 0.13 (0.10) 0.21 (0.06) 0.17 (0.02) 0.15 (0.04)	0.16 (0.02) 0.15 (0.07) 0.16 (0.02) 0.13 (0.05) 0.14 (0.01) 0.15 (0.04)	$\begin{array}{c} 0.22\ (0.09)\\ 0.22\ (0.16)\\ 0.19\ (0.08)\\ 0.25\ (0.14)\\ \end{array}\\ \begin{array}{c} 0.21\ (0.09)\\ 0.22\ (0.06) \end{array}$	$\begin{array}{c} 0.27\ (0.09)\\ 0.21\ (0.08)\\ 0.01\ (0.18)\\ 0.20\ (0.10)\\ \end{array}\\ \begin{array}{c} 0.22\ (0.08)\\ 0.21\ (0.07)\\ \end{array}$	0.20 0.19 0.12 0.20 0.19 0.18
IRM V-REX EIIL IB-IRM	72.12 (0.49) 72.05 (1.25) 72.60 (0.47) 72.50 (0.49)	68.69 (0.65) 68.92 (0.98) 68.45 (0.53) 68.50 (0.40)	66.54 (0.42) 66.33 (0.74) 66.38 (0.66) 66.64 (0.28)	31.58 (9.52) 10.29 (0.46) 30.04 (10.9) 39.86 (10.5)	43.69 (1.26) 43.28 (0.52) 42.98 (1.03) 40.85 (2.08)	63.50 (1.23) 63.21 (1.57) 62.76 (1.72) 61.26 (1.20)	57.69 (4.50) 54.01 (6.17) 57.20 (5.33) 58.27 (5.33)	EIIL IB-IRM CNC	0.14 (0.03) 0.12 (0.04) 0.16 (0.04)	0.16 (0.02) 0.15 (0.06) 0.16 (0.04)	0.20 (0.05) 0.21 (0.06) 0.19 (0.08)	0.23 (0.10) 0.15 (0.13) 0.27 (0.13)	0.10 0.19 0.16 0.20
CNC	72.40 (0.46)	67.24 (0.90)	65.79 (0.80)	12.21 (3.85)	42.78 (1.53)	61.03 (2.49)	53.56 (7.50)	WL KERNEL GC KERNEL	0.39 (0.00) 0.02 (0.00)	0.21 (0.00) 0.00 (0.00)	0.00 (0.00) 0.29 (0.00)	0.00(0.00) 0.00(0.00)	0.15 0.08
GOODv1 GOODv2 †Averaged	72.71 (0.52) 73.17 (0.39) rank is also re	69.04 (0.86) 69.70 (0.27) ported in the l	67.24 (0.88) 67.78 (0.76) blankets becau	19.77 (17.1) 44.91 (4.31) use of dataset h	44.71 (1.14) 45.25 (1.27) neterogeneity. I	63.66 (0.84) 64.45 (1.99) Lower rank is	56.19 (2.50) 60.88 (1.00) better.	Γ_{1-HOT} Γ_{GIN} Γ_{RPGIN} GOODV1	$0.17 (0.08) \\ 0.24 (0.04) \\ 0.26 (0.05) \\ 0.22 (0.07)$	0.25 (0.06) 0.18 (0.04) 0.20 (0.04) 0.23 (0.09)	0.12 (0.09) 0.29 (0.11) 0.25 (0.12) 0.40 (0.06)	0.23 (0.08) 0.28 (0.06) 0.20 (0.05) 0.29 (0.08)	0.19 0.25 0.23 0.29
U		•						GOODV1 GOODV2	0.27 (0.07)	0.22 (0.05)	0.31 (0.12)	0.26 (0.08)	0.25

Table 1 00D concretization performance on complex distribution shifts for real world graphs

Table 5. OOD generalization performance on graph size shifts for real-world graphs in terms of Matthews correlation coefficient.

GOOD outperform previous methods under other *realistic shifts* by a significant margin up to **10%**.

Summary

Through the lens of causality, we establish general SCMs to characterize the distribution shifts on graphs, and generalize the invariance principle to graphs.

We instantiate the invariance principle through a novel framework GOOD, where the prediction is decomposed into the subgraph identification and classification.

We show that the provable identification of the underlying invariant subgraph can be achieved using a contrastive strategy both theoretically and empirically.

YOU! Contact: <u>yqchen@cse.cuhk.edu.hk</u>